1
|
Möller K, Gulzar T, Lennartz M, Viehweger F, Kluth M, Hube-Magg C, Bernreuther C, Bawahab AA, Simon R, Clauditz TS, Sauter G, Schlichter R, Hinsch A, Kind S, Jacobsen F, Burandt E, Frost N, Reck M, Marx AH, Krech T, Lebok P, Fraune C, Steurer S. TTF-1 is a highly sensitive but not fully specific marker for pulmonary and thyroidal cancer: a tissue microarray study evaluating more than 17,000 tumors from 152 different tumor entities. Virchows Arch 2024:10.1007/s00428-024-03926-1. [PMID: 39377914 DOI: 10.1007/s00428-024-03926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
Abstract
Thyroid transcription factor 1 (TTF-1) immunohistochemistry (IHC) is routinely used for the distinction of primary pulmonary adenocarcinomas. However, TTF-1 can also occur in other malignancies. A tissue microarray containing 17,772 samples from 152 different tumor types was analyzed. Napsin-A, CK20, SATB2, FABP1, and Villin-1 IHC data were available from previous studies. TTF-1 staining was seen in 82 of 152 tumor categories including thyroidal cancers (19-100%), adenocarcinomas (94%), neuroendocrine tumors (67%) of the lung, small cell neuroendocrine carcinomas (71-80%), mesenchymal tumors (up to 42%), and thymomas (39%). Comparative analysis of TTF-1 and Napsin-A revealed a sensitivity/specificity of 94%/86% (TTF-1), 87%/98% (Napsin-A), and 85%/99.1% (TTF-1 and Napsin-A) for the distinction of pulmonary adenocarcinomas. Combined analysis of TTF-1 and enteric markers revealed a positivity for TTF-1 and at least one enteric marker in 22% of pulmonary adenocarcinomas but also a TTF-1 positivity in 6% of colorectal, 2% of pancreatic, and 3% of gastric adenocarcinomas. TTF-1 is a marker of high sensitivity but insufficient specificity for pulmonary adenocarcinomas. A small fraction of TTF-1-positive gastrointestinal adenocarcinomas represents a pitfall mimicking enteric-type pulmonary adenocarcinoma. Combined analysis of TTF-1 and Napsin-A improves the specificity of pulmonary adenocarcinoma diagnosis.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tayyaba Gulzar
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Nikolaj Frost
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
2
|
Nishioka N, Kawachi H, Yamada T, Tamiya M, Negi Y, Goto Y, Nakao A, Shiotsu S, Tanimura K, Takeda T, Okada A, Harada T, Date K, Chihara Y, Hasegawa I, Tamiya N, Masui T, Sai N, Ishida M, Katayama Y, Morimoto K, Iwasaku M, Tokuda S, Kijima T, Takayama K. Unraveling the influence of TTF-1 expression on immunotherapy outcomes in PD-L1-high non-squamous NSCLC: a retrospective multicenter study. Front Immunol 2024; 15:1399889. [PMID: 39076994 PMCID: PMC11284020 DOI: 10.3389/fimmu.2024.1399889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Several studies explored the association between thyroid transcription factor-1 (TTF-1) and the therapeutic efficacy of immunotherapy. However, the effect of TTF-1 on the therapeutic efficacy of programmed death-1 (PD-1) inhibitor/chemoimmunotherapy in patients with non-squamous non-small cell lung cancer (non-Sq NSCLC) with a programmed death-ligand 1 (PD-L1) tumor proportion score of 50% or more who are highly susceptible to immunotherapy remains unresolved. Therefore, we evaluated whether TTF-1 has a clinical impact on this population. Methods Patients with non-Sq NSCLC and high PD-L1 expression who received PD-1 inhibitor monotherapy or chemoimmunotherapy between May 2017 and December 2020 were retrospectively enrolled. Treatment efficacy was compared after adjusting for baseline differences using propensity score matching. Results Among the 446 patients with NSCLC with high PD-L1 expression, 266 patients with non-Sq NSCLC were analyzed. No significant differences in therapeutic efficacy were observed between the TTF-1-positive and -negative groups in the overall and propensity score-matched populations. Of chemoimmunotherapy, pemetrexed containing regimen significantly prolonged progression-free survival compared to chemoimmunotherapy without pemetrexed, regardless of TTF-1 expression (TTF1 positive; HR: 0.46 (95% Confidence interval: 0.26-0.81), p<0.01, TTF-1 negative; HR: 0.29 (95% Confidence interval: 0.09-0.93), p=0.02). Discussion TTF-1 expression did not affect the efficacy of PD-1 inhibitor monotherapy or chemoimmunotherapy in patients with non-Sq NSCLC with high PD-L1 expression. In this population, pemetrexed-containing chemoimmunotherapy demonstrated superior anti-tumor efficacy, irrespective of TTF-1 expression.
Collapse
Affiliation(s)
- Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Yoshiki Negi
- Department of Respiratory Medicine and Hematology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Akira Nakao
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Kyoto, Japan
| | - Keiko Tanimura
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Kyoto, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Kyoto, Japan
| | - Asuka Okada
- Department of Respiratory Medicine, Saiseikai Suita Hospital, Suita, Osaka, Japan
| | - Taishi Harada
- Department of Medical Oncology, Fukuchiyama City Hospital, Fukuchiyama, Kyoto, Japan
| | - Koji Date
- Department of Pulmonary Medicine, Kyoto Chubu Medical Center, Nantan, Kyoto, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji, Kyoto, Japan
| | - Isao Hasegawa
- Department of Respiratory Medicine, Saiseikai Shigaken Hospital, Ritto, Shiga, Japan
| | - Nobuyo Tamiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Kyoto, Japan
| | - Taiki Masui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Natsuki Sai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
3
|
Fu M, Feng C, Wang J, Guo C, Wang Y, Gao R, Wang J, Zhu Q, Zhang X, Qi J, Zhang Y, Bian Y, Wang Z, Fang Y, Cao L, Hong B, Wang H. CD3, CD8, IFN-γ, tumor and stroma inflammatory cells as prognostic indicators for surgically resected SCLC: evidences from a 10-year retrospective study and immunohistochemical analysis. Clin Exp Med 2024; 24:99. [PMID: 38748269 PMCID: PMC11096253 DOI: 10.1007/s10238-024-01329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
Current clinical guidelines limit surgical intervention to patients with cT1-2N0M0 small cell lung cancer (SCLC). Our objective was to reassess the role of surgery in SCLC management, and explore novel prognostic indicators for surgically resected SCLC. We reviewed all patients diagnosed with SCLC from January 2011 to April 2021 in our institution. Survival analysis was conducted using the Kaplan-Meier method, and independent prognostic factors were assessed through the Cox proportional hazard model. In addition, immunohistochemistry (IHC) staining was performed to evaluate the predictive value of selected indicators in the prognosis of surgically resected SCLC patients. In the study, 177 SCLC patients undergoing surgical resection were ultimately included. Both univariate and multivariate Cox analysis revealed that incomplete postoperative adjuvant therapy emerged as an independent risk factor for adverse prognosis (p < 0.001, HR 2.96). Survival analysis revealed significantly superior survival among pN0-1 patients compared to pN2 patients (p < 0.0001). No significant difference in postoperative survival was observed between pN1 and pN0 patients (p = 0.062). Patients with postoperative stable disease (SD) exhibited lower levels of tumor inflammatory cells (TIC) (p = 0.0047) and IFN-γ expression in both area and intensity (p < 0.0001 and 0.0091, respectively) compared to those with postoperative progressive disease (PD). Conversely, patients with postoperative SD showed elevated levels of stromal inflammatory cells (SIC) (p = 0.0453) and increased counts of CD3+ and CD8+ cells (p = 0.0262 and 0.0330, respectively). Survival analysis indicated that high levels of SIC, along with low levels of IFN-γ+ cell area within tumor tissue, may correlate positively with improved prognosis in surgically resected SCLC (p = 0.017 and 0.012, respectively). In conclusion, the present study revealed that the patients with pT1-2N1M0 staging were a potential subgroup of SCLC patients who may benefit from surgery. Complete postoperative adjuvant therapy remains an independent factor promoting a better prognosis for SCLC patients undergoing surgical resection. Moreover, CD3, CD8, IFN-γ, TIC, and SIC may serve as potential indicators for predicting the prognosis of surgically resected SCLC.
Collapse
Affiliation(s)
- Meng Fu
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Chunmei Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jialiang Wang
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chang Guo
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yongguang Wang
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rong Gao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiexiao Wang
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qizhi Zhu
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaopeng Zhang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jian Qi
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yani Zhang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yuting Bian
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhipeng Wang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yuan Fang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Lejie Cao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Bo Hong
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China.
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Hongzhi Wang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230026, Anhui, China.
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Murayama T, Nakayama J, Jiang X, Miyata K, Morris AD, Cai KQ, Prasad RM, Ma X, Efimov A, Belani N, Gerstein ER, Tan Y, Zhou Y, Kim W, Maruyama R, Campbell KS, Chen L, Yang Y, Balachandran S, Cañadas I. Targeting DHX9 Triggers Tumor-Intrinsic Interferon Response and Replication Stress in Small Cell Lung Cancer. Cancer Discov 2024; 14:468-491. [PMID: 38189443 PMCID: PMC10905673 DOI: 10.1158/2159-8290.cd-23-0486] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Activating innate immunity in cancer cells through cytoplasmic nucleic acid sensing pathways, a phenomenon known as "viral mimicry," has emerged as an effective strategy to convert immunologically "cold" tumors into "hot." Through a curated CRISPR-based screen of RNA helicases, we identified DExD/H-box helicase 9 (DHX9) as a potent repressor of double-stranded RNA (dsRNA) in small cell lung cancers (SCLC). Depletion of DHX9 induced accumulation of cytoplasmic dsRNA and triggered tumor-intrinsic innate immunity. Intriguingly, ablating DHX9 also induced aberrant accumulation of R-loops, which resulted in an increase of DNA damage-derived cytoplasmic DNA and replication stress in SCLCs. In vivo, DHX9 deletion promoted a decrease in tumor growth while inducing a more immunogenic tumor microenvironment, invigorating responsiveness to immune-checkpoint blockade. These findings suggest that DHX9 is a crucial repressor of tumor-intrinsic innate immunity and replication stress, representing a promising target for SCLC and other "cold" tumors in which genomic instability contributes to pathology. SIGNIFICANCE One promising strategy to trigger an immune response within tumors and enhance immunotherapy efficacy is by inducing endogenous "virus-mimetic" nucleic acid accumulation. Here, we identify DHX9 as a viral-mimicry-inducing factor involved in the suppression of double-stranded RNAs and R-loops and propose DHX9 as a novel target to enhance antitumor immunity. See related commentary by Chiappinelli, p. 389. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Takahiko Murayama
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biomedical Science Graduate Program, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Alexander D. Morris
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul M. Prasad
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrey Efimov
- Bio Imaging Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Neel Belani
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emily R. Gerstein
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - William Kim
- Moores Cancer Center, UC San Diego, La Jolla, California
- Center for Novel Therapeutics, UC San Diego, La Jolla, California
- Department of Medicine, UC San Diego, La Jolla, California
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kerry S. Campbell
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Lu Chen
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yibin Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Tiwari A, Kumari B, Nandagopal S, Mishra A, Shukla KK, Kumar A, Dutt N, Ahirwar DK. Promises of Protein Kinase Inhibitors in Recalcitrant Small-Cell Lung Cancer: Recent Scenario and Future Possibilities. Cancers (Basel) 2024; 16:963. [PMID: 38473324 DOI: 10.3390/cancers16050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
SCLC is refractory to conventional therapies; targeted therapies and immunological checkpoint inhibitor (ICI) molecules have prolonged survival only marginally. In addition, ICIs help only a subgroup of SCLC patients. Different types of kinases play pivotal roles in therapeutics-driven cellular functions. Therefore, there is a significant need to understand the roles of kinases in regulating therapeutic responses, acknowledge the existing knowledge gaps, and discuss future directions for improved therapeutics for recalcitrant SCLC. Here, we extensively review the effect of dysregulated kinases in SCLC. We further discuss the pharmacological inhibitors of kinases used in targeted therapies for recalcitrant SCLC. We also describe the role of kinases in the ICI-mediated activation of antitumor immune responses. Finally, we summarize the clinical trials evaluating the potential of kinase inhibitors and ICIs. This review overviews dysregulated kinases in SCLC and summarizes their potential as targeted therapeutic agents. We also discuss their clinical efficacy in enhancing anticancer responses mediated by ICIs.
Collapse
Affiliation(s)
- Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur 342005, Rajasthan, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur 342005, Rajasthan, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences Jodhpur, Jodhpur 342005, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| |
Collapse
|
6
|
Steiniche T, Georgsen JB, Meldgaard P, Deitz AC, Ayers M, Pietanza MC, Zu K. Molecular epidemiology study of programmed death ligand 1 and ligand 2 protein expression assessed by immunohistochemistry in extensive-stage small-cell lung cancer. Front Oncol 2024; 13:1225820. [PMID: 38269020 PMCID: PMC10807038 DOI: 10.3389/fonc.2023.1225820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Objectives Prevalence of tumor PD-L1 expression in extensive-stage small-cell lung cancer (ES-SCLC) is variable, and data on PD-L2 expression are limited. The prognostic values of these biomarkers are not well understood. The current study was conducted to address these data gaps. Methods A retrospective cohort study of Danish patients with histologically confirmed ES-SCLC and evaluable tumor samples who were receiving usual care before the introduction of immunotherapy was conducted. Protein expression of PD-L1 and PD-L2 was determined by immunohistochemistry (IHC) using the PD-L1 IHC 22C3 pharmDx assay and a PD-L2 IHC assay using a propriety mouse monoclonal antibody. A combined positive score (CPS) of ≥1 was used to define biomarker positivity. Kaplan-Meier plots and Cox proportional hazard models were employed to assess the relationship between PD-L1 and PD-L2 protein expression and OS. Results Among 80 patients, 31% (n=25) and 36% (n=29) had disease positive for PD-L1 and PD-L2, respectively. Overall, 85% (n=68) of patients had concordant PD-L1/PD-L2 status; 26% (n=21) had double positive disease (both PD-L1 and PD-L2 CPS ≥1) and 59% (n=47) had double negative disease (both PD-L1 and PD-L2 CPS <1). PD-L1 and PD-L2 positivity were each associated with longer OS (unadjusted hazard ratios [HRs], 0.35 [95% CI, 0.21-0.61] and 0.50 [95% CI, 0.31-0.82]); the associations persisted after adjustment for several known prognostic factors (HRs, 0.41 [95% CI, 0.22-0.75] and 0.44 [95% CI, 0.25-0.79] for PD-L1 and PD-L2 positivity, respectively). When evaluating OS in patients with double positive disease, unadjusted and adjusted HRs for double positive compared with double negative were similar to those with only PD-L1 or PD-L2 positivity (unadjusted HR, 0.36 [95% CI, 0.20-0.64]; adjusted HR, 0.36 [0.18-0.73]). Conclusion PD-L1 and PD-L2 positivity were observed in approximately one-third of assessed ES-SCLC tumor samples and were highly congruent. Patients with PD-L1 and PD-L2 positivity, alone or combined, were associated with longer OS, independent of other prognostic factors.
Collapse
Affiliation(s)
- Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Peter Meldgaard
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mark Ayers
- Merck & Co., Inc., Rahway, NJ, United States
| | | | - Ke Zu
- Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
7
|
Krpina K, Vranić S, Tomić K, Samaržija M, Batičić L. Small Cell Lung Carcinoma: Current Diagnosis, Biomarkers, and Treatment Options with Future Perspectives. Biomedicines 2023; 11:1982. [PMID: 37509621 PMCID: PMC10377361 DOI: 10.3390/biomedicines11071982] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation, early dissemination, acquired therapy resistance, and poor prognosis. Early diagnosis of SCLC is crucial since most patients present with advanced/metastatic disease, limiting the potential for curative treatment. While SCLC exhibits initial responsiveness to chemotherapy and radiotherapy, treatment resistance commonly emerges, leading to a five-year overall survival rate of up to 10%. New effective biomarkers, early detection, and advancements in therapeutic strategies are crucial for improving survival rates and reducing the impact of this devastating disease. This review aims to comprehensively summarize current knowledge on diagnostic options, well-known and emerging biomarkers, and SCLC treatment strategies and discuss future perspectives on this aggressive malignancy.
Collapse
Affiliation(s)
- Kristina Krpina
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Krešimir Tomić
- Department of Oncology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Miroslav Samaržija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Pauli C. [CUP syndrome-diagnostics from the perspective of pathology]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:336-345. [PMID: 37079060 PMCID: PMC10129915 DOI: 10.1007/s00117-023-01143-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
PROBLEM Histologic and immunohistologic workup of tumor material from metastases of a previously unknown primary tumor is important for identifying their origin, but is often insufficient for this purpose without clinical oncologic and radiologic evaluation. PROCEDURE In the initial cancer of unknown primary (CUP) situation, histologic and immunohistochemical workup together with clinicoradiologic correlations contribute significantly to the identification of the primary tumor. There are now accepted guidelines to follow when there is an initial CUP situation. Molecular diagnostic tools can be used to investigate changes at the nucleic acid level, which can provide clues about the primary tumor, including potential targets for therapy. If, despite broad and interdisciplinary diagnostics, it is not possible to identify the primary tumor, the diagnosis is CUP syndrome. If a true CUP situation is present, it is important to assign the tumor to a tumor class or a specific therapy-sensitive subgroup as best as possible so that the best possible treatment can be given. However, for a final assignment to a primary tumor or a final classification as CUP, a comparison with medical oncological and imaging findings is indispensable. CONCLUSION When CUP is suspected, close interdisciplinary collaboration between pathology, medical oncology, and imaging is essential to achieve a viable classification as CUP or identification of a presumptive primary tumor, in the interest of providing the most specific and effective therapy for affected individuals.
Collapse
Affiliation(s)
- Chantal Pauli
- Institut für Pathologie und Molekularpathologie, Universitätsspital Zürich, Rämistrasse 100, 8091, Zürich, Schweiz.
| |
Collapse
|
9
|
PD-L1 Over-Expression Varies in Different Subtypes of Lung Cancer: Will This Affect Future Therapies? Clin Pract 2022; 12:653-671. [PMID: 36136862 PMCID: PMC9498561 DOI: 10.3390/clinpract12050068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Programmed death-ligand (PD-L) 1 and 2 are ligands of programmed cell death 1 (PD-1) receptor. They are members of the B7/CD28 ligand-receptor family and the most investigated inhibitory immune checkpoints at present. PD-L1 is the main effector in PD-1-reliant immunosuppression, as the PD-1/PD-L pathway is a key regulator for T-cell activation. Activation of T-cells warrants the upregulation of PD-1 and production of cytokines which also upregulate PD-L1 expression, creating a positive feedback mechanism that has an important role in the prevention of tissue destruction and development of autoimmunity. In the context of inadequate immune response, the prolonged antigen stimulation leads to chronic PD-1 upregulation and T-cell exhaustion. In lung cancer patients, PD-L1 expression levels have been of special interest since patients with non-small cell lung cancer (NSCLC) demonstrate higher levels of expression and tend to respond more favorably to the evolving PD-1 and PD-L1 inhibitors. The Food and Drug Administration (FDA) has approved the PD-1 inhibitor, pembrolizumab, alone as front-line single-agent therapy instead of chemotherapy in patients with NSCLC and PD-L1 ≥1% expression and chemoimmunotherapy regimens are available for lower stage disease. The National Comprehensive Cancer Network (NCCN) guidelines also delineate treatment by low and high expression of PD-L1 in NSCLC. Thus, studying PD-L1 overexpression levels in the different histological subtypes of lung cancer can affect our approach to treating these patients. There is an evolving role of immunotherapy in the other sub-types of lung cancer, especially small cell lung cancer (SCLC). In addition, within the NSCLC category, squamous cell carcinomas and non-G12C KRAS mutant NSCLC have no specific targetable therapies to date. Therefore, assessment of the PD-L1 expression level among these subtypes of lung cancer is required, since lung cancer is one of the few malignances wherein PD-L1 expression levels is so crucial in determining the role of immunotherapy. In this study, we compared PD-L1 expression in lung cancer according to the histological subtype of the tumor.
Collapse
|