1
|
Wu X, Sun AR, Crawford R, Xiao Y, Wang Y, Prasadam I, Mao X. Inhibition of Leukotriene A 4 Hydrolase Suppressed Cartilage Degradation and Synovial Inflammation in a Mouse Model of Experimental Osteoarthritis. Cartilage 2024; 15:184-194. [PMID: 37086004 PMCID: PMC11368897 DOI: 10.1177/19476035231169940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE Chronic inflammation plays an important role in the osteoarthritis (OA) pathology but how this influence OA disease progression is unclear. Leukotriene B4 (LTB4) is a potent proinflammatory lipid mediator generated from arachidonic acid through the sequential activities of 5-lipoxygenase, 5-lipoxygenase-activating protein, Leukotriene A4 hydrolase (LTA4H) and its downstream product LTB4. The aim of this study is to investigate the involvement and the potential therapeutic target of the LTB4 pathway in OA disease progression. DESIGN Both clinical human cartilage samples (n = 7) and mice experimental OA models (n = 6) were used. The levels of LTA4H and leukotriene B4 receptor 1 were first examined using immunostaining in human OA/non-OA cartilage and mice experimental OA models. We also determined whether the LTA4H pathway was associated with cartilage degeneration and synovitis inflammation in OA mice models and human articular chondrocytes. RESULTS We found that both LTA4H and LTB4 receptor (BLT1) were highly expressed in human and mice OA cartilage. Inhibition of LTA4H suppressed cartilage degeneration and synovitis in OA mice model. Furthermore, inhibition of LTA4H promoted cartilage regeneration by upregulating chondrogenic genes expression such as aggrecan (ACAN), collagen 2A1 (COL2A1), and SRY-Box transcription factor 9 (SOX9). CONCLUSIONS Our results indicate that the LTA4H pathway is a crucial regulator of OA pathogenesis and suggest that LTA4H could be a therapeutic target in combat OA.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Orthopaedic Department, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yanping Wang
- Health Management Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Ding QX, Wang X, Li TS, Li YF, Li WY, Gao JH, Liu YR, Zhuang W. Comparative Analysis of Short-Term and Long-Term Clinical Efficacy of Mesenchymal Stem Cells from Different Sources in Knee Osteoarthritis: A Network Meta-Analysis. Stem Cells Int 2024; 2024:2741681. [PMID: 38882598 PMCID: PMC11178400 DOI: 10.1155/2024/2741681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background Joint articular injection of mesenchymal stem cells (MSCs) has emerged as a novel treatment approach for osteoarthritis (OA). However, the effectiveness of MSCs derived from different sources in treating OA patients remains unclear. Therefore, this study aimed to explore the differences between the effectiveness and safety of different sources of MSCs. Materials and Methods For inclusion consideration, we searched trial registries and published databases, including PubMed, Cochrane Library, Embase, and Web of Science databases. Revman (V5.3), STATA (V16.0), and R (V4.0) were utilized for conducting data analysis, while the Cochrane Risk of Bias Tool was employed for assessing the quality of the studies. We derived outcome measures at 6 and 12 months based on the duration of study follow-up, including visual analog scale (VAS) score, WOMAC score, WOMAC pain, WOMAC Functional Limitation, and WOMAC stiffness. The evaluation time for short-term effectiveness is set at 6 months, while 12 months is utilized as the longest follow-up time for most studies to assess long-term effectiveness. Results The evaluation of literature quality showed that the included studies had excellent methodological quality. A meta-analysis revealed that different sources of MSCs improved knee function and pain more effectively among patients suffering from knee OA (KOA) than controls. The results of the network meta-analysis showed the following: short-term functional improvement (the indexes were evaluated after 6 months of follow-up) (WOMAC total score: bone marrow-derived MSC (BMMSC) vs. adipose-derived MSC (ADMSC) (mean difference (MD) = -20.12, 95% confidence interval (CI) -125.24 to 42.88), umbilical cord-derived MSC (UCMSC) (MD = -7.81, 95% CI -158.13 to 74.99); WOMAC stiffness: BMMSC vs. ADMSC (MD = -0.51, 95% CI -7.27 to 4.29), UCMSC (MD = -0.75, 95% CI -9.74 to 6.63); WOMAC functional limitation: BMMSC vs. ADMSC (MD = -12.22, 95% CI -35.05 to 18.86), UCMSC (MD = -9.31, 95% CI -44.26 to 35.27)). Long-term functional improvement (the indexes were evaluated after 12 months of follow-up) (WOMAC total: BMMSC vs. ADMSC (MD = -176.77, 95% CI -757.1 to 378.25), UCMSC (MD = -181.55, 95% CI -937.83 to 541.13); WOMAC stiffness: BMMSC vs. ADMSC (MD = -0.5, 95% CI -26.05 to 18.61), UCMSC (MD = -1.03, 95% CI -30.44 to 21.69); WOMAC functional limitation: BMMSC vs. ADMSC (MD = -5.18, 95% CI -316.72 to 177.1), UCMSC (MD = -8.33, 95% CI -358.78 to 218.76)). Short-term pain relief (the indexes were evaluated after 6 months of follow-up) (VAS score: UCMSC vs. BMMSC (MD = -10.92, 95% CI -31.79 to 12.03), ADMSC (MD = -14.02, 95% CI -36.01 to 9.81), PLMSC (MD = -17.09, 95% CI -46.31 to 13.17); WOMAC pain relief: BMMSC vs. ADMSC (MD = -11.42, 95% CI -39.52 to 11.77), UCMSC (MD = -6.73, 95% CI -47.36 to 29.15)). Long-term pain relief (the indexes were evaluated after 12 months of follow-up) (VAS score: BMMSC vs. UCMSC (MD = -4.33, 95% CI -36.81 to 27.08), ADMSC (MD = -11.43, 95% CI -37.5 to 13.42); WOMAC pain relief: UCMSC vs. ADMSC (MD = 0.23, 95% CI -37.87 to 38.11), BMMSC (MD = 5.89, 95% CI -25.39 to 51.41)). According to the GRADE scoring system, WOMAC, VAS, and AE scores were of low quality. Conclusion Meta-analysis suggests MSCs can effectively treat KOA by improving pain and knee function compared to control groups. In terms of functional improvement in KOA patients, both short-term (6-month follow-up) and long-term (12-month follow-up) results indicated that while the differences between most treatments were not statistically significant, bone marrow-derived MSCs may have some advantages over other sources of MSCs. Additionally, BM-MSCs and UC-MSCs may offer certain benefits over ADMSCs in terms of pain relief for KOA patients, although the variances between most studies were not statistically significant. Therefore, this study suggests that BM-MSCs may present clinical advantages over other sources of MSCs.
Collapse
Affiliation(s)
- Qi Xin Ding
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xu Wang
- Henan University of Chinese Medicine, Zhengzhou, China
| | | | | | - Wan Yue Li
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jia Huan Gao
- Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Rong Liu
- Shandong First Medical University, Jinan, China
| | - WeiSheng Zhuang
- Henan Provincial People's Hospital, Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
4
|
Buck AN, Shultz SP, Huffman KF, Vincent HK, Batsis JA, Newman CB, Beresic N, Abbate LM, Callahan LF. Mind the Gap: Exploring Nutritional Health Compared With Weight Management Interests of Individuals with Osteoarthritis. Curr Dev Nutr 2022; 6:nzac084. [PMID: 35702382 PMCID: PMC9188467 DOI: 10.1093/cdn/nzac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background For persons with osteoarthritis (OA), nutrition education may facilitate weight and OA symptom management. Objectives The primary aim of this study was to determine preferred OA-related nutritional and weight management topics and their preferred delivery modality. The secondary aim was to determine whether there is a disconnect between what patients want to know about nutrition and OA management and what information health-care professionals (HCPs) are providing to patients. Methods The Osteoarthritis Action Alliance surveyed individuals with OA to identify their preferences, categorized in 4 domains: 1) strategies for weight management and a healthy lifestyle; 2) vitamins, minerals, and other supplements; 3) foods or nutrients that may reduce inflammation; and 4) diets for weight loss. HCPs were provided these domains and asked which topics they discussed with patients with OA. Both groups were asked to select currently utilized or preferred formats of nutritional resources. Results Survey responses from 338 individuals with OA and 104 HCPs were included. The highest preference rankings in each domain were: 1) foods that make OA symptoms worse (65%), foods and nutrients to reduce inflammation (57%), and healthy weight loss (42%); 2) glucosamine (53%), vitamin D (49%), and omega-3 fatty acids (45%); 3) spices and herbs (65%), fruits and vegetables (58%), and nuts (40%); and 4) Mediterranean diet (21%), low-carbohydrate diet (18%), and fasting or intermittent fasting (15%). There was greater than 20% discrepancy between interests reported by individuals with OA and discussions reported by HCPs on: weight loss strategies, general information on vitamins and minerals, special dietary considerations for other conditions, mindful eating, controlling caloric intake or portion sizes, and what foods worsen OA symptoms. Most respondents preferred to receive nutrition information in a passive format and did not want information from social media messaging. Conclusions There is disparity between the nutrition education content preferred by individuals with OA (which often lacks empirical support) and evidence-based topics being discussed by HCPs. HCPs must communicate evidence-based management of joint health and OA symptoms in patient-preferred formats. This study explored the information gap between what individuals with OA want to know and what HCPs believe they need to know.
Collapse
Affiliation(s)
- Ashley N Buck
- Kinesiology Department, Seattle University, Seattle, WA, USA
| | - Sarah P Shultz
- Kinesiology Department, Seattle University, Seattle, WA, USA
- Osteoarthritis Action Alliance, Chapel Hill, NC, USA
| | | | - Heather K Vincent
- Osteoarthritis Action Alliance, Chapel Hill, NC, USA
- Department of Physical Medicine and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - John A Batsis
- Osteoarthritis Action Alliance, Chapel Hill, NC, USA
- Division of Geriatric Medicine, School of Medicine, and Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connie B Newman
- Osteoarthritis Action Alliance, Chapel Hill, NC, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Lauren M Abbate
- Osteoarthritis Action Alliance, Chapel Hill, NC, USA
- VA Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, CO, USA
- Department of Emergency Medicine University of Colorado School of Medicine, Aurora, CO, USA
| | - Leigh F Callahan
- Osteoarthritis Action Alliance, Chapel Hill, NC, USA
- Division of Rheumatology, Allergy and Immunology, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Systemic versus local adipokine expression differs in a combined obesity and osteoarthritis mouse model. Sci Rep 2021; 11:17001. [PMID: 34417537 PMCID: PMC8379250 DOI: 10.1038/s41598-021-96545-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage loss and reduced joint function. OA risk factors are age and obesity. Many adipokines are altered by obesity but also OA although systemic adipokine regulation in OA is not always clear. Therefore, metabolic effects of diet-induced obesity on OA development as well as the influence of obesity and OA progression on systemic vs. local adipokine expression in joints were compared. C57Bl/6-mice fed with HFD (high fat diet) or normal diet prior to destabilization of the medial meniscus (DMM) were sacrificed 4/6/8 weeks after surgery. Sera were evaluated for adiponectin, leptin, visfatin, cytokines. Liver grading and staging for non-alcoholic steatohepatitis (NASH) was performed and crown-like structures (CLS) in adipose tissue measured. OA progression was scored histologically. Adipokine-expressing cells and types were evaluated by immunohistochemistry. Time-dependent changes in DMM-progression were reflected by increased systemic adiponectin levels in DMM especially combined with HFD. While HFD increased serum leptin, DMM reduced systemic leptin significantly. OA scores correlated with bodyweight, leptin and hepatic scoring. Locally, increased numbers of adiponectin- and leptin-producing fibroblasts were observed in damaged menisci but visfatin was not changed. Local adipokine expression was independent from systemic levels, suggesting different mechanisms of action.
Collapse
|