1
|
Stier SP, Kreisbeck C, Ihssen H, Popp MA, Hauch J, Malek K, Reynaud M, Goumans TPM, Carlsson J, Todorov I, Gold L, Räder A, Wenzel W, Bandesha ST, Jacques P, Garcia-Moreno F, Arcelus O, Friederich P, Clark S, Maglione M, Laukkanen A, Castelli IE, Carrasco J, Cabanas MC, Stein HS, Ozcan O, Elbert D, Reuter K, Scheurer C, Demura M, Han SS, Vegge T, Nakamae S, Fabrizio M, Kozdras M. Materials Acceleration Platforms (MAPs): Accelerating Materials Research and Development to Meet Urgent Societal Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407791. [PMID: 39239995 DOI: 10.1002/adma.202407791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Climate Change and Materials Criticality challenges are driving urgent responses from global governments. These global responses drive policy to achieve sustainable, resilient, clean solutions with Advanced Materials (AdMats) for industrial supply chains and economic prosperity. The research landscape comprising industry, academe, and government identified a critical path to accelerate the Green Transition far beyond slow conventional research through Digital Technologies that harness Artificial Intelligence, Smart Automation and High Performance Computing through Materials Acceleration Platforms, MAPs. In this perspective, following the short paper, a broad overview about the challenges addressed, existing projects and building blocks of MAPs will be provided while concluding with a review of the remaining gaps and measures to overcome them.
Collapse
Affiliation(s)
- Simon P Stier
- Department Digital Transformation, TLZ-RT, Fraunhofer ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | | | - Holger Ihssen
- Helmholtz Association, Rue du Trône 98, Bruxelles, B-1050, Belgium
| | - Matthias Albert Popp
- Department Digital Transformation, TLZ-RT, Fraunhofer ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Jens Hauch
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy (HI ERN), Institute of Materials for Electronics and Energy Technology (i-MEET), 91058, Erlangen, Germany
| | - Kourosh Malek
- Forschungszentrum Jülich GmbH, Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research (IEK), 52428, Jülich, Germany
| | - Marine Reynaud
- Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - T P M Goumans
- Software for Chemistry & Materials BV, De Boelelaan 1083, Amsterdam, 1081 HV, The Netherlands
| | - Johan Carlsson
- Dassault Systemes Deutschland GmbH, 51063, Cologne, Germany
| | - Ilian Todorov
- Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, WA4 4AD, UK
| | - Lukas Gold
- Department Digital Transformation, TLZ-RT, Fraunhofer ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Andreas Räder
- Department Digital Transformation, TLZ-RT, Fraunhofer ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Shahbaz Tareq Bandesha
- Department Digital Transformation, TLZ-RT, Fraunhofer ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | | | - Francisco Garcia-Moreno
- Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Oier Arcelus
- Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Pascal Friederich
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Simon Clark
- SINTEF Industry, New Energy Solutions, Sem Sælands vei 12, Trondheim, 7034, Norway
| | - Mario Maglione
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB)-UMR 5026, CNRS, Université de Bordeaux, 87 Avenue du Docteur Schweitzer, Pessac, F-33608, France
| | - Anssi Laukkanen
- VTT Technical Research Centre of Finland Ltd., Espoo, 02044, Finland
| | - Ivano Eligio Castelli
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Javier Carrasco
- Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Montserrat Casas Cabanas
- Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Helge Sören Stein
- Technical University of Munich (TUM), Digital Catalysis, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Ozlem Ozcan
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - David Elbert
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaf, Faradayweg 4-6, 14195, Berlin, Germany
| | - Christoph Scheurer
- Fritz-Haber-Institut der Max-Planck-Gesellschaf, Faradayweg 4-6, 14195, Berlin, Germany
| | - Masahiko Demura
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0044, Japan
| | - Sang Soo Han
- Korea Institute of Science and Technology (KIST), 5 Hwarangno 14-gil, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Sawako Nakamae
- Service de physique de l'état condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Monica Fabrizio
- Institute of Condensed Matter and Technologies for Energy, National Research Council, Corso Stati Uniti, 4 - 35127, Padua, Italy
| | - Mark Kozdras
- Canmet MATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, ON, L8P 0A5, Canada
| |
Collapse
|
2
|
Opdensteinen P, Buyel JF. Optimizing interleukin-6 and 8 expression, clarification and purification in plant cell packs and plants for application in advanced therapy medicinal products and cellular agriculture. J Biotechnol 2024; 390:1-12. [PMID: 38740307 DOI: 10.1016/j.jbiotec.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Healthcare and nutrition are facing a paradigm shift in light of advanced therapy medicinal products (ATMPs) and cellular agriculture options respectively. Both options heavily rely on some sort of animal cell culture, e.g. autologous stem cells. These cultures require various growth factors, such as interleukin-6 and 8 (IL-6/8), in a pure, safe and sustainable form that can be provided in a scalable manner. Plants seem well suited for this task because purification of small proteins can be readily achieved by membrane separation, human/animal pathogens do not replicate in plants and production can be scaled up using in-door farming or agricultural practices. Here, we illustrate this capacity by first optimizing the codon usage of IL-6/8 for translation in Nicotiana spp., as well as testing the effect of untranslated regions and product targeting to different sub-cellular compartments on expression in a high-throughput plant cell pack (PCP) assay. In the chloroplast, IL-6 accumulated up to 6.9±3.8 (SD, n=2) and 14.4±7.4 mg kg-1 (SD, n=5) were observed in case of IL-8. When transferring IL-8 expression into whole plants, accumulation was 12.3±1.5 mg kg-1 (SD, n=3). After extraction and clarification, IL-8 was purified using a two-stage process consisting of an ultrafiltration/diafiltration step with 100 kDa and 10 kDa cut off membranes followed by an IMAC polishing step. The purity, yield and recovery were 97.8%, 6.6 mg kg-1 and 38%, respectively. We evaluated the ability of the proposed purification process to remove endotoxins to ensure the compatibility of plant-made growth factors with cell culture.
Collapse
Affiliation(s)
- P Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, Aachen 52074, Germany
| | - J F Buyel
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, Vienna A-1190, Austria.
| |
Collapse
|
3
|
Pedro F, Veiga F, Mascarenhas-Melo F. Impact of GAMP 5, data integrity and QbD on quality assurance in the pharmaceutical industry: How obvious is it? Drug Discov Today 2023; 28:103759. [PMID: 37660982 DOI: 10.1016/j.drudis.2023.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
In the pharmaceutical industry, it is essential to ensure the safety and efficacy of medicinal products. Therefore a robust quality assurance framework is needed. This manuscript examines the impact of GAMP 5 and data integrity (DI) on quality assurance, while also highlighting the role of quality by design (QbD) principles. GAMP 5 is a widely used framework for validating automated systems that establishes quality assurance practices. DI guarantees the reliability of data collected throughout various stages of drug development. The integration of QbD principles promotes a systematic approach to development that emphasizes a deep understanding of critical quality attributes, risk management, and continuous improvement. With their implementation, organizations are able to meet regulatory requirements and provide safe medications to patients worldwide.
Collapse
Affiliation(s)
- Francisca Pedro
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Philippe V, Jeannerat A, Peneveyre C, Jaccoud S, Scaletta C, Hirt-Burri N, Abdel-Sayed P, Raffoul W, Darwiche S, Applegate LA, Martin R, Laurent A. Autologous and Allogeneic Cytotherapies for Large Knee (Osteo)Chondral Defects: Manufacturing Process Benchmarking and Parallel Functional Qualification. Pharmaceutics 2023; 15:2333. [PMID: 37765301 PMCID: PMC10536774 DOI: 10.3390/pharmaceutics15092333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cytotherapies are often necessary for the management of symptomatic large knee (osteo)-chondral defects. While autologous chondrocyte implantation (ACI) has been clinically used for 30 years, allogeneic cells (clinical-grade FE002 primary chondroprogenitors) have been investigated in translational settings (Swiss progenitor cell transplantation program). The aim of this study was to comparatively assess autologous and allogeneic approaches (quality, safety, functional attributes) to cell-based knee chondrotherapies developed for clinical use. Protocol benchmarking from a manufacturing process and control viewpoint enabled us to highlight the respective advantages and risks. Safety data (telomerase and soft agarose colony formation assays, high passage cell senescence) and risk analyses were reported for the allogeneic FE002 cellular active substance in preparation for an autologous to allogeneic clinical protocol transposition. Validation results on autologous bioengineered grafts (autologous chondrocyte-bearing Chondro-Gide scaffolds) confirmed significant chondrogenic induction (COL2 and ACAN upregulation, extracellular matrix synthesis) after 2 weeks of co-culture. Allogeneic grafts (bearing FE002 primary chondroprogenitors) displayed comparable endpoint quality and functionality attributes. Parameters of translational relevance (transport medium, finished product suturability) were validated for the allogeneic protocol. Notably, the process-based benchmarking of both approaches highlighted the key advantages of allogeneic FE002 cell-bearing grafts (reduced cellular variability, enhanced process standardization, rationalized logistical and clinical pathways). Overall, this study built on our robust knowledge and local experience with ACI (long-term safety and efficacy), setting an appropriate standard for further clinical investigations into allogeneic progenitor cell-based orthopedic protocols.
Collapse
Affiliation(s)
- Virginie Philippe
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Salim Darwiche
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Alexis Laurent
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| |
Collapse
|
5
|
Burns JS. The Evolving Landscape of Potency Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:165-189. [PMID: 37258790 DOI: 10.1007/978-3-031-30040-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is a "goldilocks" aspect to potency assays. On the one hand, a comprehensive evaluation of the cell product with detailed quantitative measurement of the critical quality attribute/s of the desired biological activity is required. On the other hand, the potency assay benefits from simplification and lean approaches that avoid unnecessary complication and enhance robustness, to provide a reproducible and scalable product. There is a need to balance insightful knowledge of complex biological healing processes with straightforward manufacture of an advanced therapeutic medicinal product (ATMP) that can be administered in a trustworthy cost-effective manner. While earlier chapters within this book have highlighted numerous challenges facing the potency assay conundrum, this chapter offers a forward-looking perspective regarding the many recent advances concerning acellular products, cryopreservation, induced MSC, cell priming, nanotechnology, 3D culture, regulatory guidelines and evolving institutional roles, that are likely to facilitate potency assay development in the future.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
6
|
Lindner N, Blaeser A. Scalable Biofabrication: A Perspective on the Current State and Future Potentials of Process Automation in 3D-Bioprinting Applications. Front Bioeng Biotechnol 2022; 10:855042. [PMID: 35669061 PMCID: PMC9165583 DOI: 10.3389/fbioe.2022.855042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Biofabrication, specifically 3D-Bioprinting, has the potential to disruptively impact a wide range of future technological developments to improve human well-being. Organs-on-Chips could enable animal-free and individualized drug development, printed organs may help to overcome non-treatable diseases as well as deficiencies in donor organs and cultured meat may solve a worldwide environmental threat in factory farming. A high degree of manual labor in the laboratory in combination with little trained personnel leads to high costs and is along with strict regulations currently often a hindrance to the commercialization of technologies that have already been well researched. This paper therefore illustrates current developments in process automation in 3D-Bioprinting and provides a perspective on how the use of proven and new automation solutions can help to overcome regulatory and technological hurdles to achieve an economically scalable production.
Collapse
Affiliation(s)
- Nils Lindner
- BioMedical Printing Technology, Department of Mechanical Engineering, TU Darmstadt, Darmstadt, Germany
| | - Andreas Blaeser
- BioMedical Printing Technology, Department of Mechanical Engineering, TU Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Tannenbaum SE, Reubinoff BE. Advances in hPSC expansion towards therapeutic entities: A review. Cell Prolif 2022; 55:e13247. [PMID: 35638399 PMCID: PMC9357360 DOI: 10.1111/cpr.13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
For use in regenerative medicine, large‐scale manufacturing of human pluripotent stem cells (hPSCs) under current good manufacturing practice (cGMPs) is required. Much progress has been made since culturing under static two‐dimensional (2D) conditions on feeders, including feeder‐free cultures, conditioned and xeno‐free media, and three‐dimensional (3D) dynamic suspension expansion. With the advent of horizontal‐blade and vertical‐wheel bioreactors, scale‐out for large‐scale production of differentiated hPSCs became possible; control of aggregate size, shear stress, fluid hydrodynamics, batch‐feeding strategies, and other process parameters became a reality. Moving from substantially manipulated processes (i.e., 2D) to more automated ones allows easer compliance to current good manufacturing practices (cGMPs), and thus easier regulatory approval. Here, we review the current advances in the field of hPSC culturing, advantages, and challenges in bioreactor use, and regulatory areas of concern with respect to these advances. Manufacturing trends to reduce risk and streamline large‐scale manufacturing will bring about easier, faster regulatory approval for clinical applications.
Collapse
Affiliation(s)
- Shelly E Tannenbaum
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin E Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Philippe V, Laurent A, Hirt-Burri N, Abdel-Sayed P, Scaletta C, Schneebeli V, Michetti M, Brunet JF, Applegate LA, Martin R. Retrospective Analysis of Autologous Chondrocyte-Based Cytotherapy Production for Clinical Use: GMP Process-Based Manufacturing Optimization in a Swiss University Hospital. Cells 2022; 11:1016. [PMID: 35326468 PMCID: PMC8947208 DOI: 10.3390/cells11061016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cultured autologous human articular chondrocyte (HAC) implantation has been extensively investigated for safe and effective promotion of structural and functional restoration of knee cartilage lesions. HAC-based cytotherapeutic products for clinical use must be manufactured under an appropriate quality assurance system and follow good manufacturing practices (GMP). A prospective clinical trial is ongoing in the Lausanne University Hospital, where the HAC manufacturing processes have been implemented internally. Following laboratory development and in-house GMP transposition of HAC cell therapy manufacturing, a total of 47 patients have been treated to date. The main aim of the present study was to retrospectively analyze the available manufacturing records of the produced HAC-based cytotherapeutic products, outlining the inter-individual variability existing among the 47 patients regarding standardized transplant product preparation. These data were used to ameliorate and to ensure the continued high quality of cytotherapeutic care in view of further clinical investigations, based on the synthetic analyses of existing GMP records. Therefore, a renewed risk analysis-based process definition was performed, with specific focus set on process parameters, controls, targets, and acceptance criteria. Overall, high importance of the interdisciplinary collaboration and of the manufacturing process robustness was underlined, considering the high variability (i.e., quantitative, functional) existing between the treated patients and between the derived primary HAC cell types.
Collapse
Affiliation(s)
- Virginie Philippe
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
| | - Alexis Laurent
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland;
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Valentine Schneebeli
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Murielle Michetti
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Jean-François Brunet
- Cell Production Center, Service of Pharmacy, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
| |
Collapse
|