1
|
Muniz M, Loprinzi CL, Orme JJ, Koch RM, Mahmoud AM, Kase AM, Riaz IB, Andrews JR, Thorpe MP, Johnson GB, Kendi AT, Kwon ED, Nauseef JT, Morgans AK, Sartor O, Childs DS. Salivary toxicity from PSMA-targeted radiopharmaceuticals: What we have learned and where we are going. Cancer Treat Rev 2024; 127:102748. [PMID: 38703593 PMCID: PMC11160931 DOI: 10.1016/j.ctrv.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Clinical trials of prostate-specific membrane antigen (PSMA) targeted radiopharmaceuticals have shown encouraging results. Some agents, like lutetium-177 [177Lu]Lu-PSMA-617 ([177Lu]Lu-PSMA-617), are already approved for late line treatment of metastatic castration-resistant prostate cancer (mCRPC). Projections are for continued growth of this treatment modality; [177Lu]Lu-PSMA-617 is being studied both in earlier stages of disease and in combination with other anti-cancer therapies. Further, the drug development pipeline is deep with variations of PSMA-targeting radionuclides, including higher energy alpha particles conjugated to PSMA-honing vectors. It is safe to assume that an increasing number of patients will be exposed to PSMA-targeted radiopharmaceuticals during the course of their cancer treatment. In this setting, it is important to better understand and mitigate the most commonly encountered toxicities. One particularly vexing side effect is xerostomia. In this review, we discuss the scope of the problem, inventories to better characterize and monitor this troublesome side effect, and approaches to preserve salivary function and effectively palliate symptoms. This article aims to serve as a useful reference for prescribers of PSMA-targeted radiopharmaceuticals, while also commenting on areas of missing data and opportunities for future research.
Collapse
Affiliation(s)
- Miguel Muniz
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| | | | - Jacob J Orme
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| | - Regina M Koch
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, US.
| | | | - Adam M Kase
- Department of Medical Oncology, Mayo Clinic, Jacksonville FL, US.
| | - Irbaz B Riaz
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, US.
| | - Jack R Andrews
- Department of Urology, Mayo Clinic Arizona, Phoenix, AZ, US.
| | - Matthew P Thorpe
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Geoffrey B Johnson
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US; Department of Immunology, Mayo Clinic, Rochester, MN, US.
| | - Ayse T Kendi
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, MN, US.
| | - Jones T Nauseef
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, US.
| | - Alicia K Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, US.
| | - Oliver Sartor
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US; Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Daniel S Childs
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| |
Collapse
|
2
|
Nguyen H, Hird K, Cardaci J, Smith S, Lenzo NP. Lutetium-177 Labelled Anti-PSMA Monoclonal Antibody (Lu-TLX591) Therapy for Metastatic Prostate Cancer: Treatment Toxicity and Outcomes. Mol Diagn Ther 2024; 28:291-299. [PMID: 38446353 PMCID: PMC11068829 DOI: 10.1007/s40291-024-00699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Whilst prostate cancer is the fourth most common cancer globally, effective therapies for patients with advanced disease are lacking. In recent years, interest in using theranostic agents to treat castrate-resistant prostate cancer (CRPC) and metastatic prostate cancer has emerged. Lu-TLX591 monoclonal antibody is a potential agent of significance; however, to date, reports on its toxicity and efficacy have been limited to small clinical trials in heavily pretreated patients. This retrospective study describes the real-world toxicity and efficacy profile of Lu-TLX591. METHODS Eighteen patients received Lu-TLX591 at two private oncology centres in Australia. Patients were eligible if they had CRPC or metastatic prostate cancer and prostate-specific membrane antigen (PSMA)-avid disease confirmed by PSMA-positron emission tomography (PET). Patients received two cycles of Lu-TLX591 monoclonal antibody (177 Lu-DOTA-rosopatamab) each dosed from 1.01-2.85 GBq, 14 days apart. Patient side effects, blood test results and radiology reports were recorded on the patient's electronic medical record (eMR). RESULTS Prominent side effects included fatigue (55.6%), anorexia (16.7%), nausea (11.1%), and transfusion reactions (11.1%). All-grade haematological toxicities included lymphopenia (61.1%), anaemia (22.2%), leukopenia (27.8%), neutropenia (27.8%), and thrombocytopenia (27.8%). Grade 4 toxicity included lymphopenia (6.7%) and thrombocytopenia (6.7%). Patients' prostate-specific antigen (PSA) responses were as follows; ≥ 30% PSA decline (27.8%), ≥ 50% PSA decline (11.4%) and any PSA decline (38.9%). Follow-up radiology revealed 54.5% stable disease, 45.4% disease progression and 9.1% disease regression. CONCLUSION Lu-TLX591 was safely administered at acceptable toxicity and its efficacy reflects previous clinical trials. Larger studies are required and are underway (NCT04786847; NCT05146973; NCT04876651) to determine Lu-TLX591 effectiveness amongst different prostate cancer populations and compare its efficacy against peptide-based radiopharmaceutical agents.
Collapse
Affiliation(s)
- Hanh Nguyen
- School of Medicine, Fremantle Campus, The University of Notre Dame, Fremantle, WA, Australia.
- Genesiscare, Murdoch, WA, Australia.
- Fiona Stanley Hospital, 11 Robin Warren Dr, Murdoch, Perth, WA, 6150, Australia.
| | - Kathryn Hird
- School of Medicine, Fremantle Campus, The University of Notre Dame, Fremantle, WA, Australia
| | - Joe Cardaci
- School of Medicine, Fremantle Campus, The University of Notre Dame, Fremantle, WA, Australia
- Genesiscare, Murdoch, WA, Australia
| | | | - Nat P Lenzo
- School of Medicine, Fremantle Campus, The University of Notre Dame, Fremantle, WA, Australia
- Genesiscare, Murdoch, WA, Australia
| |
Collapse
|
3
|
Sugawara T, Nevedomskaya E, Heller S, Böhme A, Lesche R, von Ahsen O, Grünewald S, Nguyen HM, Corey E, Baumgart SJ, Georgi V, Pütter V, Fernández‐Montalván A, Vasta JD, Robers MB, Politz O, Mumberg D, Haendler B. Dual targeting of the androgen receptor and PI3K/AKT/mTOR pathways in prostate cancer models improves antitumor efficacy and promotes cell apoptosis. Mol Oncol 2024; 18:726-742. [PMID: 38225213 PMCID: PMC10920092 DOI: 10.1002/1878-0261.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.
Collapse
Affiliation(s)
- Tatsuo Sugawara
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | | | | | | | | | | | | | | | - Eva Corey
- Department of UrologyUniversity of WashingtonSeattleWAUSA
| | - Simon J. Baumgart
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Victoria Georgi
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Vera Pütter
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Amaury Fernández‐Montalván
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
- Present address:
Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany
| | | | | | - Oliver Politz
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
- Present address:
Adcento ApSCopenhagenDenmark
| | - Bernard Haendler
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| |
Collapse
|
4
|
Zhao Y, Culman J, Cascorbi I, Nithack N, Marx M, Zuhayra M, Lützen U. PSMA-617 inhibits proliferation and potentiates the 177Lu-PSMA-617-induced death of human prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3315-3326. [PMID: 37284895 PMCID: PMC10567812 DOI: 10.1007/s00210-023-02539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The human prostate-specific membrane antigen (PSMA) is substantially up-regulated in metastatic prostate cancer (PCa) cells. PSMA can be targeted by 177Lu conjugated to PSMA-617, a high-affinity ligand for the PSMA. The binding of the radioligand, 177Lu-PSMA-617, results in its internalisation and delivery of β-radiation into the cancer cells. However, PSMA-617, a component of the final product in the synthesis of the radioligand, may also play a role in the pathophysiology of PCa cells. The present study aimed to clarify the effects of PSMA-617 (10, 50 and 100 nM) on the expression of PSMA in PSMA-positive LNCaP cells, their proliferation, 177Lu-PSMA-617-induced cell death by WST-1 and lactate dehydrogenase assays, immunohistochemistry, western blotting, immunofluorescence staining and uptake of 177Lu-PSMA-617. PSMA-617 at 100 nM concentration induced cell-growth arrest, down-regulated cyclin D1 and cyclin E1 (by 43 and 36%, respectively) and up-regulated the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (by 48%). Immunofluorescence staining demonstrated reduced content of DNA, pointing to a lower rate of cell division. PSMA-617 (up to 100 nM) did not alter the uptake of 177Lu-PSMA-617 into the LNCaP cells. Interestingly, simultaneous treatment with 177Lu-PSMA-617 and PSMA-617 for 24 and 48 h substantially potentiated the cell-death promoting effects of the radioligand. In conclusion, the combination of impeding tumour cell proliferation by PSMA-617 and its potentiation of the radiation-induced cell death brought about by 177Lu-PSMA-617 in PCa cells may considerably improve the outcome of the radiation therapy with 177Lu-PSMA-617, especially in patients with decreased radiosensitivity of PCa cells to the radioligand.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Juraj Culman
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Niklas Nithack
- Central Rhine Community Hospital-Clinic for Urology and Pediatric Urology, Koblenz, Germany
| | - Marlies Marx
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maaz Zuhayra
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
5
|
Chakravarty R, Lan X, Chakraborty S, Cai W. Astatine-211 for PSMA-targeted α-radiation therapy of micrometastatic prostate cancer: a sustainable approach towards precision oncology. Eur J Nucl Med Mol Imaging 2023; 50:1844-1847. [PMID: 36862207 PMCID: PMC10200747 DOI: 10.1007/s00259-023-06178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Gillette CM, Yette GA, Cramer SD, Graham LS. Management of Advanced Prostate Cancer in the Precision Oncology Era. Cancers (Basel) 2023; 15:2552. [PMID: 37174018 PMCID: PMC10177563 DOI: 10.3390/cancers15092552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Prostate cancer (PC) is the second leading cause of cancer death in men in the United States. While diversified and improved treatment options for aggressive PC have improved patient outcomes, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and an area of investigative therapeutic interest. This review will cover the seminal clinical data supporting the indication of new precision oncology-based therapeutics and explore their limitations, present utility, and potential in the treatment of PC. Systemic therapies for high-risk and advanced PC have experienced significant development over the past ten years. Biomarker-driven therapies have brought the field closer to the goal of being able to implement precision oncology therapy for every patient. The tumor agnostic approval of pembrolizumab (a PD-1 inhibitor) marked an important advancement in this direction. There are also several PARP inhibitors indicated for patients with DNA damage repair deficiencies. Additionally, theranostic agents for both imaging and treatment have further revolutionized the treatment landscape for PC and represent another advancement in precision medicine. Radiolabeled prostate-specific membrane antigen (PSMA) PET/CT is rapidly becoming a standard of care for diagnosis, and PSMA-targeted radioligand therapies have gained recent FDA approval for metastatic prostate cancer. These advances in precision-based oncology are detailed in this review.
Collapse
Affiliation(s)
- Claire M. Gillette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Laura S. Graham
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Naeem Z, Zahra UB, Numair Younis M, Khan IU, Shahid A. Lutetium-177 Prostate Specific Membrane Antigen Therapy in a Patient With Double Malignancy and Single Functioning Kidney: A Case Report. Cureus 2023; 15:e36938. [PMID: 37131569 PMCID: PMC10148966 DOI: 10.7759/cureus.36938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Lutetium-177 labeled with 617 types of Prostate Specific Membrane Antigen (177Lu PSMA-617) Radio-ligand Therapy (RLT) is an emerging modality of choice for the treatment of metastatic castration-resistant prostate carcinoma (mCRPC). After it is administered intravenously, it is excreted primarily through the kidneys. Physiological excretion and concomitant expression of PSMA receptors on renal tissues are associated with potential renal toxicity, a matter of concern while treating patients with multiple doses of RLT. There are published articles that have demonstrated the safe use of 177Lu PSMA-617 in patients with bilateral fair-functioning kidneys; however, only a single study has been published that has evaluated its safety in patients with solitary-functioning kidneys. The uniqueness of this case report lies in the fact that we have documented the renal safety profile of 177Lu PSMA-617 therapy after multiple doses in a patient who presented with double malignancy (metastatic castration-resistant prostate carcinoma and left renal cell carcinoma) and had a single-functioning right kidney.
Collapse
|