1
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
2
|
Dacomo L, La Vitola P, Brunelli L, Messa L, Micotti E, Artioli L, Sinopoli E, Cecutti G, Leva S, Gagliardi S, Pansarasa O, Carelli S, Guaita A, Pastorelli R, Forloni G, Cereda C, Balducci C. Transcriptomic and metabolomic changes might predict frailty in SAMP8 mice. Aging Cell 2024; 23:e14263. [PMID: 38961613 PMCID: PMC11464142 DOI: 10.1111/acel.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Frailty is a geriatric, multi-dimensional syndrome that reflects multisystem physiological change and is a transversal measure of reduced resilience to negative events. It is characterized by weakness, frequent falls, cognitive decline, increased hospitalization and dead and represents a risk factor for the development of Alzheimer's disease (AD). The fact that frailty is recognized as a reversible condition encourages the identification of earlier biomarkers to timely predict and prevent its occurrence. SAMP8 (Senescence-Accelerated Mouse Prone-8) mice represent the most appropriate preclinical model to this aim and were used in this study to carry transcriptional and metabolic analyses in the brain and plasma, respectively, upon a characterization at cognitive, motor, structural, and neuropathological level at 2.5, 6, and 9 months of age. At 2.5 months, SAMP8 mice started displaying memory deficits, muscle weakness, and motor impairment. Functional alterations were associated with a neurodevelopmental deficiency associated with reduced neuronal density and glial cell loss. Through transcriptomics, we identified specific genetic signatures well distinguishing SAMP8 mice at 6 months, whereas plasma metabolomics allowed to segregate SAMP8 mice from SAMR1 already at 2.5 months of age by detecting constitutively lower levels of acylcarnitines and lipids in SAMP8 at all ages investigated correlating with functional deficits and neuropathological signs. Our findings suggest that specific genetic alterations at central level, as well as metabolomic changes in plasma, might allow to early assess a frail condition leading to dementia development, which paves the foundation for future investigation in a clinical setting.
Collapse
Affiliation(s)
- Letizia Dacomo
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Pietro La Vitola
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Laura Brunelli
- Department of Environmental Health SciencesLaboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Letizia Messa
- Department of ElectronicsInformation and Bioengineering (DEIB) Politecnico di MilanoMilanItaly
- Department of Pediatrics, Center of Functional Genomics and Rare DiseasesBuzzi Children's HospitalMilanItaly
| | - Edoardo Micotti
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Luisa Artioli
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Elena Sinopoli
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Greta Cecutti
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Susanna Leva
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Stella Gagliardi
- Molecular Biology and TranscriptomicsIRCCS Mondino FoundationPaviaItaly
| | - Orietta Pansarasa
- Cellular Model and NeuroepigeneticsIRCCS Mondino FoundationPaviaItaly
| | - Stephana Carelli
- Department of Pediatrics, Center of Functional Genomics and Rare DiseasesBuzzi Children's HospitalMilanItaly
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”University of MilanMilanItaly
| | | | - Roberta Pastorelli
- Department of Environmental Health SciencesLaboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Gianluigi Forloni
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare DiseasesBuzzi Children's HospitalMilanItaly
| | - Claudia Balducci
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
3
|
Zhou M, Sun W, Chu J, Liao Y, Xu P, Chen X, Li M. Identification of novel biomarkers for frailty diagnosis via serum amino acids metabolomic analysis using UPLC-MS/MS. Proteomics Clin Appl 2024; 18:e2300035. [PMID: 38196151 DOI: 10.1002/prca.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/02/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE This study was aimed to analyze serum amino acid metabolite profiles in frailty patients, gain a better understanding of the metabolic mechanisms in frailty, and assess the diagnostic value of metabolomics-based biomarkers of frailty. EXPERIMENTAL DESIGN This study utilized the ultra-performance liquid chromatography tandem mass spectrometry to examine amino acids associated with frailty. Additionally, we employed multivariate statistical methods, metabolomic data analysis, receiver operating characteristic (ROC) curve analysis, and pathway enrichment analysis. RESULTS Among the assayed amino acid metabolites, we identified biomarkers for frailty. ROC curve analysis for frailty diagnosis based on the modified Fried's frailty index showed that the areas under ROC curve of tryptophan, phenylalanine, aspartic acid, and combination were 0.775, 0.679, 0.667, and 0.807, respectively. ROC curve analysis for frailty diagnosis based on Frail Scale showed that the areas under ROC curve of cystine, phenylalanine, and combination of amino acids (cystine, L-Glutamine, citrulline, tyrosine, kynurenine, phenylalanine, glutamin acid) were 0.834, 0.708, and 0.854 respectively. CONCLUSION AND CLINICAL RELEVANCE In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty. CLINICAL SIGNIFICANCE Frailty is a clinical syndrome, as a consequence it is challenging to identify at early course of the disease, even based on the existing frailty scales. Early diagnosis and appropriate patient management are the key to improve the survival and limit disabilities in frailty patients. Proven by the extensive laboratory and clinical studies on frailty, comprehensive analysis of metabolic levels in frail patients, identification of biomarkers and study of pathogenic pathways of metabolites contribute to the prediction and early diagnosis of frailty. In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty.
Collapse
Affiliation(s)
- Mengyuan Zhou
- The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, P. R. China
| | - Wenjing Sun
- The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, P. R. China
| | - Jiaojiao Chu
- The Department of Geriatrics, Zhejiang Hospital, Hangzhou, P. R. China
| | - Yingping Liao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Pengfei Xu
- The Department of Geriatrics, Zhejiang Hospital, Hangzhou, P. R. China
| | - Xujiao Chen
- The Department of Geriatrics, Zhejiang Hospital, Hangzhou, P. R. China
| | - Meng Li
- The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, P. R. China
| |
Collapse
|
4
|
Chen Y, Wu J. Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies. Aging Dis 2024:AD.2024.0407. [PMID: 38739945 DOI: 10.14336/ad.2024.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
The proportion of the elderly population is gradually increasing as a result of medical care advances, leading to a subsequent surge in geriatric diseases that significantly impact quality of life and pose a substantial healthcare burden. Sarcopenia, characterized by age-related decline in skeletal muscle mass and quality, affects a considerable portion of older adults, particularly the elderly, and can result in adverse outcomes such as frailty, fractures, bedridden, hospitalization, and even mortality. Skeletal muscle aging is accompanied by underlying metabolic changes. Therefore, elucidating these metabolic profiles and specific mechanisms holds promise for informing prevention and treatment strategies for sarcopenia. This review provides a comprehensive overview of the key metabolites identified in current clinical studies on sarcopenia and their potential pathophysiological alterations in metabolic activity. Besides, we examine potential therapeutic strategies for sarcopenia from a perspective focused on metabolic regulation.
Collapse
|
5
|
Liu J, Zhang L, Li D, Yu X, Gao Y, Zhou Y. Intestinal metabolomics in premature infants with late-onset sepsis. Sci Rep 2024; 14:4659. [PMID: 38409213 PMCID: PMC10897474 DOI: 10.1038/s41598-024-55398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
We aimed to investigate the characteristics of intestinal metabolomics and non-invasive biomarkers for early diagnosis of late-onset sepsis (LOS) by analyzing gut metabolites in preterm infants with LOS. We collected stool samples from septic and healthy preterm infants for analysis by liquid chromatography-mass spectrometry. 123 different metabolites were identified and 13 pathways were mainly involved. Glycine, serine, and threonine metabolism; glyoxylate and dicarboxylic acid metabolism; glutathione metabolism; primary bile acid biosynthesis; steroid synthesis; pentose and glucuronic acid interconversion may be involved in the pathogenesis of LOS in preterm infants. The significant changes of N-Methyldopamine, cellulose, glycine, gamma-Glutamyltryptophan, N-Ribosylnicotinamide and 1alpha, 25-dihydroxycholecalciferol showed specific diagnostic values and as non-invasive biomarkers for LOS.
Collapse
Affiliation(s)
- Jingfei Liu
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| | - Li Zhang
- Department of Neonatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Dong Li
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiaotong Yu
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| | - Ying Gao
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| | - Ying Zhou
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| |
Collapse
|
6
|
Hetherington-Rauth M, Johnson E, Migliavacca E, Parimi N, Langsetmo L, Hepple RT, Grzywinski Y, Corthesy J, Ryan TE, Ferrucci L, Feige JN, Orwoll ES, Cawthon PM. Nutrient Metabolites Associated With Low D3Cr Muscle Mass, Strength, and Physical Performance in Older Men. J Gerontol A Biol Sci Med Sci 2024; 79:glad217. [PMID: 37694554 PMCID: PMC10809040 DOI: 10.1093/gerona/glad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The relationship between amino acids, B vitamins, and their metabolites with D3-creatine (D3Cr) dilution muscle mass, a more direct measure of skeletal muscle mass, has not been investigated. We aimed to assess associations of plasma metabolites with D3Cr muscle mass, as well as muscle strength and physical performance in older men from the Osteoporotic Fractures in Men cohort study. METHODS Out of 1 425 men (84.2 ± 4.1 years), men with the lowest D3Cr muscle mass (n = 100), slowest walking speed (n = 100), lowest grip strength (n = 100), and a random sample (n = 200) serving as a comparison group to the low groups were included. Metabolites were analyzed using liquid chromatography-tandem mass spectrometry. Metabolite differences between the low groups and random sample and their relationships with the muscle outcomes adjusted for confounders and multiple comparisons were assessed using t-test/Mann-Whitney-Wilcoxon and partial correlations, respectively. RESULTS For D3Cr muscle mass, significant biomarkers (p < .001) with ≥10% fold difference and largest partial correlations were tryptophan (Trp; r = 0.31), kynurenine (Kyn)/Trp; r = -0.27), nicotinamide (Nam)/quinolinic acid (Quin; r = 0.21), and alpha-hydroxy-5-methyl-tetrahydrofolate (hm-THF; r = -0.25). For walking speed, hm-THF, Nam/Quin, and Quin had the largest significance and fold difference, whereas valine (r = 0.17), Trp (r = 0.17), HKyn/Xant (r = -0.20), neopterin (r = -0.17), 5-methyl-THF (r = -0.20), methylated folate (r = -0.21), and thiamine (r = -0.18) had the strongest correlations. Only hm-THF was correlated with grip strength (r = -0.21) and differed between the low group and the random sample. CONCLUSIONS Future interventions focusing on how the Trp metabolic pathway or hm-THF influences D3Cr muscle mass and physical performance declines in older adults are warranted.
Collapse
Affiliation(s)
| | - Eileen Johnson
- California Pacific Medical Center, Research Institute, San Francisco, California, USA
| | | | - Neeta Parimi
- California Pacific Medical Center, Research Institute, San Francisco, California, USA
| | - Lisa Langsetmo
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Yohan Grzywinski
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - John Corthesy
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Terence E Ryan
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Gaithersburg, Maryland, USA
| | - Jérôme N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric S Orwoll
- Oregon Health and Science University, Portland, Oregon, USA
| | - Peggy M Cawthon
- California Pacific Medical Center, Research Institute, San Francisco, California, USA
- University of California, Department of Epidemiology and Biostatistics, San Francisco, California, USA
| |
Collapse
|
7
|
Metri NJ, Butt AS, Murali A, Steiner-Lim GZ, Lim CK. Normative Data on Serum and Plasma Tryptophan and Kynurenine Concentrations from 8089 Individuals Across 120 Studies: A Systematic Review and Meta-Analysis. Int J Tryptophan Res 2023; 16:11786469231211184. [PMID: 38034059 PMCID: PMC10687991 DOI: 10.1177/11786469231211184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
In this systematic review and meta-analysis, a normative dataset is generated from the published literature on the kynurenine pathway in control participants extracted from case-control and methodological validation studies. Study characteristics were mapped, and studies were evaluated in terms of analytical rigour and methodological validation. Meta-analyses of variance between types of instruments, sample matrices and metabolites were conducted. Regression analyses were applied to determine the relationship between metabolite, sample matrix, biological sex, participant age and study age. The grand mean concentrations of tryptophan in the serum and plasma were 60.52 ± 15.38 μM and 51.45 ± 10.47 μM, respectively. The grand mean concentrations of kynurenine in the serum and plasma were 1.96 ± 0.51 μM and 1.82 ± 0.54 μM, respectively. Regional differences in metabolite concentrations were observed across America, Asia, Australia, Europe and the Middle East. Of the total variance within the data, mode of detection (MOD) accounted for up to 2.96%, sample matrix up to 3.23%, and their interaction explained up to 1.53%; the latter of which was determined to be negligible. This review was intended to inform future empirical research and method development studies and successfully synthesised pilot data. The pilot data reported in this study will inform future precision medicine initiatives aimed at targeting the kynurenine pathway by improving the availability and quality of normative data.
Collapse
Affiliation(s)
- Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Ali S Butt
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Ava Murali
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Genevieve Z Steiner-Lim
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
8
|
Wang C, Guo X, Xu X, Liang S, Wang W, Zhu F, Wang S, Wu J, Zhang L, Sun X, Chen X, Cai G. Association between sarcopenia and frailty in elderly patients with chronic kidney disease. J Cachexia Sarcopenia Muscle 2023. [PMID: 37300354 PMCID: PMC10401549 DOI: 10.1002/jcsm.13275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Frailty and sarcopenia are prevalent in chronic kidney disease (CKD) populations and could increase the risk for adverse health outcomes. Few studies assess the correlation between frailty, sarcopenia and CKD in non-dialysis patients. Therefore, this study aimed to determine frailty-associated factors in elderly CKD stage I-IV patients, expected to early identify and intervene in the frailty of elderly CKD patients. METHODS A total of 774 elderly CKD I-IV patients (>60 years of age) recruited from 29 clinical centers in China between March 2017 and September 2019 were included in this study. We established a Frailty Index (FI) model to evaluate frailty risk and verified the distributional property of FI in the study population. Sarcopenia was defined according to the criteria of the Asian Working Group for Sarcopenia 2019. Multinomial logistic regression analysis was used to assess the associated factors for frailty. RESULTS Seven hundred seventy-four patients (median age 67 years, 66.0% males) were included in this analysis, with a median estimated glomerular filtration rate of 52.8 mL/min/1.73 m2 . The prevalence of sarcopenia was 30.6%. The FI exhibited a right-skewed distribution. The age-related slope of FI was 1.4% per year on a logarithmic scale (r2 = 0.706, 95% CI 0.9, 1.8, P < 0.001). The upper limit of FI was around 0.43. The FI was related to mortality (HR = 1.06, 95% CI 1.00, 1.12, P = 0.041). Multivariate multinomial logistic regression analysis showed that sarcopenia, advanced age, CKD stage II-IV, low level of serum albumin and increased waist-hip ratio were significantly associated with high FI status, while advanced age and CKD stage III-IV were significantly associated with for median FI status. Moreover, the results from the subgroup were consistent with the leading results. CONCLUSIONS Sarcopenia was independently associated with an increased risk for frailty in elderly CKD I-IV patients. Patients with sarcopenia, advanced age, high CKD stage, high waist-hip ratio and low serum albumin level should be assessed for frailty.
Collapse
Affiliation(s)
- Che Wang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xinru Guo
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xieguanxuan Xu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Shuang Liang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Wenling Wang
- Department of Nephrology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fanglei Zhu
- Department of Nephrology, Fuxing Hospital Affiliate to Capital University of Medical Sciences, Beijing, China
| | - Siyang Wang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- 953th Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Jie Wu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Li Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Calvani R, Picca A, Rodriguez-Mañas L, Tosato M, Coelho-Júnior HJ, Biancolillo A, Laosa O, Gervasoni J, Primiano A, Santucci L, Giampaoli O, Bourdel-Marchasson I, Regueme SC, Sinclair AJ, Urbani A, Landi F, Gambassi G, Marini F, Marzetti E. Amino Acid Profiles in Older Adults with Frailty: Secondary Analysis from MetaboFrail and BIOSPHERE Studies. Metabolites 2023; 13:metabo13040542. [PMID: 37110200 PMCID: PMC10147014 DOI: 10.3390/metabo13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red "Fragilidad y Envejecimiento Saludable" (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Olga Laosa
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Isabelle Bourdel-Marchasson
- Clinical Gerontology Department, Bordeaux University Hospital, 33000 Bordeaux, France
- CRMSB, CNRS UMR 5536, Université de Bordeaux, 33000 Bordeaux, France
| | - Sophie C Regueme
- CHU Bordeaux, Pole Gérontologie Clinique, 33000 Bordeaux, France
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King's College, London WC2R 2LS, UK
| | - Andrea Urbani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Gambassi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
10
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|