1
|
Akkhasutthikun P, Kaewsapsak P, Nimsamer P, Klomkliew P, Visedthorn S, Chanchaem P, Teerapakpinyo C, Payungporn S, Luangdilok S. Tissue and Plasma-Based Highly Sensitive Blocker Displacement Amplicon Nanopore Sequencing for EGFR Mutations in Lung Cancer. Cancer Res Treat 2024; 56:455-463. [PMID: 37986562 PMCID: PMC11016658 DOI: 10.4143/crt.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) mutation is a widely prevalent oncogene driver in non-small cell lung cancer (NSCLC) in East Asia. The detection of EGFR mutations is a standard biomarker test performed routinely in patients with NSCLC for the selection of targeted therapy. Here, our objective was to develop a portable new technique for detecting EGFR (19Del, T790M, and L858R) mutations based on Nanopore sequencing. MATERIALS AND METHODS The assay employed a blocker displacement amplification (BDA)-based polymerase chain reaction (PCR) technique combined with Nanopore sequencing to detect EGFR mutations. Mutant and wild-type EGFR clones were generated from DNA from H1650 (19Del heterozygous) and H1975 (T790M and L858R heterozygous) lung cancer cell lines. Then, they were mixed to assess the performance of this technique for detecting low variant allele frequencies (VAFs). Subsequently, formalin-fixed, paraffin-embedded (FFPE) tissue and cell-free DNA (cfDNA) from patients with NSCLC were used for clinical validation. RESULTS The assay can detect low VAF at 0.5% mutant mixed in wild-type EGFR. Using FFPE DNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and Cobas real-time PCR were 98.46%, 100%, and 100%, respectively. For cfDNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and droplet digital PCR were 94.74%, 100%, and 100%, respectively. CONCLUSION The BDA amplicon Nanopore sequencing is a highly accurate and sensitive method for the detection of EGFR mutations in clinical specimens.
Collapse
Affiliation(s)
- Patinya Akkhasutthikun
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Kaewsapsak
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthida Visedthorn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pragwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sutima Luangdilok
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Hofman P, Denis MG. The use of minimal residual disease in thoracic oncology: Gaps between promises and the on-the-ground reality of daily practice. Cytopathology 2024; 35:7-15. [PMID: 37222472 DOI: 10.1111/cyt.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The assessment of minimal residual disease (MRD) from blood samples of patients with resected non-small cell lung carcinoma (NSCLC) is promising and opens up many opportunities for the optimisation of patient care in daily practice. Notably, this includes the potential for escalation or de-escalation of adjuvant therapies. Thus, the evaluation of MRD status can directly contribute to an increase in the overall survival of early stage NSCLC patients and/or limit therapeutic but also "financial" toxicity. Therefore, several clinical trials recently evaluated MRD in early stage NSCLC by integrating and retrospectively comparing the results of MRD assessments. In this context, there is an urgent need to close the gap between clinical research and the use of the evaluation of MRD in routine daily practice. Further action needs to be taken, particularly in evaluating the pertinence of the detection of MRD in prospective interventional clinical studies. This may be done in part by comparing different parameters, such as the techniques used, the different time points and the cutoffs of MRD assessments. This article investigates the assessment of MRD in non-small cell lung cancers, with a special focus on the issues associated with the various assays and the limitations of using circulating free DNA analyses for MRD assessment in early stage lung cancer. Recommendations and tips for the optimisation of MRD evaluation in non-small cell lung cancers are provided.
Collapse
Affiliation(s)
- Paul Hofman
- FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France
| | - Marc G Denis
- Department of Biochemistry, INSERM, CNRS, Immunology and New Concepts in Immunotherapy, Nantes Université, CHU Nantes, Nantes, France
| |
Collapse
|
3
|
Liu Z, Li X, Zhang R, Ji L, Gong L, Ji Y, Zhou F, Yin Y, Li K, Sun P, Pu Z, Wang Q, Zou J. Identification of DNA variants at ultra-low variant allele frequencies via Taq polymerase cleavage of wild-specific blockers. Anal Bioanal Chem 2023; 415:6537-6549. [PMID: 37702773 DOI: 10.1007/s00216-023-04931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Detecting mutations related to tumors holds immense clinical significance for cancer diagnosis and treatment. However, the presence of highly redundant wild DNA poses a challenge for the advancement of low-copy mutant ctDNA genotyping in cancer cases. To address this, a Taqman qPCR strategy to identify rare mutations at low variant allele fractions (VAFs) has been developed. This strategy combines mutant-specific primers with wild-specific blockers. Diverging from other blocker-mediated PCRs, which rely on primer-induced strand displacement or the use of modified oligos resistant to Taq polymerase, our innovation is built upon the cleavage of specific blockers by Taq polymerase. Given its unique design, which does not hinge on strand displacement or base modification, we refer to this novel method as unmodified-blocker cleavage PCR (UBC-PCR). Multiple experiments consistently confirmed that variant distinction was improved significantly by introduction of 5' unmatched blockers into the reaction. Moreover, UBC-PCR successfully detected mutant DNA at VAFs as low as 0.01% across six different variant contexts. Multiplex UBC-PCR was also performed to identify a reference target and three mutations with a sensitivity of 0.01% VAFs in one single tube. In profiling the gene status from 12 lung cancer ctDNA samples and 22 thyroid cancer FNA DNA samples, UBC-PCR exhibited a 100% concordance rate with ddPCR and a commercial ARMS kit, respectively. Our work demonstrates that UBC-PCR can identify low-abundance variants with high sensitivity in multiplex reactions, independent of strand displacement and base modification. This strategy holds the potential to significantly impact clinical practice and precision medicine.
Collapse
Affiliation(s)
- Zhaocheng Liu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Xiushuai Li
- Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214122, Jiangsu Province, China
| | - Rui Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Li Ji
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Lingli Gong
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yong Ji
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Fengsheng Zhou
- Department of Ultrasound, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ying Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Koukou Li
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi, 214023, Jiangsu, China
| | - Zhening Pu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214122, Jiangsu Province, China.
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
4
|
陈 颖. [Research progress on circulating tumor DNA as a biomarker for minimal residual disease in solid tumors]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1072-1077. [PMID: 37905766 PMCID: PMC10621050 DOI: 10.7499/j.issn.1008-8830.2304040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2023] [Indexed: 11/02/2023]
Abstract
Circulating tumor DNA (ctDNA) is emerging as a novel biomarker for tumor evaluation, offering advantages such as high sensitivity and specificity, minimal invasiveness, and absence of radiation. Currently, various techniques including gene sequencing and PCR are employed for ctDNA detection. The utilization of ctDNA for monitoring minimal residual disease (MRD) enables comprehensive assessment of tumor status and early identification of tumor recurrence, achieving a remarkable detection sensitivity of 0.01%. Therefore, ctDNA holds promise as a biomarker for early diagnosis, treatment response monitoring, and prognosis prediction in solid tumors. This article reviews the commonly used methods for detecting ctDNA and their advantages in evaluating tumor MRD and guiding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- 颖 陈
- 汕头大学医学院深圳儿科临床学院,广东深圳518034
| |
Collapse
|
5
|
Verlicchi A, Canale M, Chiadini E, Cravero P, Urbini M, Andrikou K, Pasini L, Flospergher M, Burgio MA, Crinò L, Ulivi P, Delmonte A. The Clinical Significance of Circulating Tumor DNA for Minimal Residual Disease Identification in Early-Stage Non-Small Cell Lung Cancer. Life (Basel) 2023; 13:1915. [PMID: 37763318 PMCID: PMC10532754 DOI: 10.3390/life13091915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer (LC) is the deadliest malignancy worldwide. In an operable stage I-III patient setting, the detection of minimal residual disease (MRD) after curative treatment could identify patients at higher risk of relapse. In this context, the study of circulating tumor DNA (ctDNA) is emerging as a useful tool to identify patients who could benefit from an adjuvant treatment, and patients who could avoid adverse events related to a more aggressive clinical management. On the other hand, ctDNA profiling presents technical, biological and standardization challenges before entering clinical practice as a decisional tool. In this paper, we review the latest advances regarding the role of ctDNA in identifying MRD and in predicting patients' prognosis, with a particular focus on clinical trials investigating the potential of ctDNA, the technical challenges to address and the biological parameters that influence the MRD detection.
Collapse
Affiliation(s)
- Alberto Verlicchi
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Elisa Chiadini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Paola Cravero
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Kalliopi Andrikou
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Luigi Pasini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Michele Flospergher
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Marco Angelo Burgio
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| |
Collapse
|
6
|
Liu Z, Zhang R, Jiang X, Ji L, Sun P, Ji Y, Zhang Y, Ding Y, Li K, Pu Z, Zhou F, Zou J. Highly Sensitive Enrichment of Low-Frequency Variants by Hairpin Competition Amplification. Anal Chem 2023; 95:12015-12023. [PMID: 37527514 DOI: 10.1021/acs.analchem.3c01803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Gene mutations are inevitably accumulated in cells of the human body. It is of great significance to detect mutations at the earliest possible time in physiological and pathological processes. However, genotyping low-copy tumor DNA (ctDNA) in patients is challenging due to abundant wild DNA backgrounds. One novel strategy to enrich rare mutations at low variant allele fractions (VAFs) with quantitative polymerase chain reaction (qPCR) and Sanger sequencing was contrived by introducing artificial hairpins into amplicons to compete with primers, coined as the hairpin competition amplification (HCA) system. The influence imposed by artificial hairpins on primer-binding in a high-temperature PCR system was investigated for the first time in this work, paving the way for the optimization of HCA. HCA differs from the previously reported work in which hairpins are formed to inhibit extension of wild-type DNA using 5-exonuclease-negative polymerase, where the readout is dependent on melting curve analysis after asymmetric PCR. Targeted at six different variants, HCA qPCR and HCA Sanger-enriched mutant DNA at VAFs as low as 0.1 or 0.01% were performed. HCA demonstrated advantages in multiplex reaction and temperature robustness. In profiling gene status from 12 lung cancer ctDNA samples and 16 thyroid cancer FNA DNA samples, HCA demonstrated a 100% concordance rate compared to ddPCR and commercial ARMS kit. HCA qPCR and Sanger sequencing can enrich low-abundance variants with high sensitivity and temperature robustness, presenting a novel and effective tool for precision diagnosis and treatment of rare variant diseases.
Collapse
Affiliation(s)
- Zhaocheng Liu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Rui Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Xixi Jiang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Li Ji
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi 214023, Jiangsu, China
| | - Yong Ji
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Yu Zhang
- Department of Ultrasound, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Yan Ding
- Department of Ultrasound, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Koukou Li
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Zhening Pu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Fengsheng Zhou
- Department of Ultrasound, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| |
Collapse
|
7
|
Zografos E, Dimitrakopoulos FI, Koutras A. Prognostic Value of Circulating Tumor DNA (ctDNA) in Oncogene-Driven NSCLC: Current Knowledge and Future Perspectives. Cancers (Basel) 2022; 14:4954. [PMID: 36230877 PMCID: PMC9563444 DOI: 10.3390/cancers14194954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
As we enter an unprecedented era of personalized medicine, molecular targeted therapies have the potential to induce improved survival outcome in patients with non-small cell lung cancer (NSCLC). However, a significant percentage of oncogene-driven NSCLC patients will relapse even after definitive treatment, whereas chronic and durable response to targeted therapies is a less common event in advanced-stage lung cancer. This phenomenon could be attributed to minimal residual disease (MRD), defined as a population of disseminated tumor cells that survive during the course or after treatment, eventually leading to recurrence and limiting patient survival. Circulating tumor DNA (ctDNA) is a powerful biomarker for MRD detection and monitoring and is a non-invasive approach of treating cancer, and especially NSCLC, based on a real-time assessment of the tumor genomic landscape. In this review, we present the key findings of studies that have used ctDNA with regard to its prognostic value and in respect to the most common druggable driver mutations of genes in NSCLC, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1), rearranged during transfection (RET), Kirsten rat sarcoma virus (KRAS), B-Raf proto-oncogene (BRAF), and mesenchymal epithelial transition factor receptor (MET).
Collapse
Affiliation(s)
- Eleni Zografos
- Division of Oncology, University Hospital of Patras, University of Patras, 26504 Patras, Greece
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece
| | - Foteinos-Ioannis Dimitrakopoulos
- Division of Oncology, University Hospital of Patras, University of Patras, 26504 Patras, Greece
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece
| | - Angelos Koutras
- Division of Oncology, University Hospital of Patras, University of Patras, 26504 Patras, Greece
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|