1
|
Leung IHK, Strudwick MW. A systematic review of the challenges, emerging solutions and applications, and future directions of PET/MRI in Parkinson's disease. EJNMMI REPORTS 2024; 8:3. [PMID: 38748251 PMCID: PMC10962627 DOI: 10.1186/s41824-024-00194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 05/19/2024]
Abstract
PET/MRI is a hybrid imaging modality that boasts the simultaneous acquisition of high-resolution anatomical data and metabolic information. Having these exceptional capabilities, it is often implicated in clinical research for diagnosing and grading, as well as tracking disease progression and response to interventions. Despite this, its low level of clinical widespread use is questioned. This is especially the case with Parkinson's disease (PD), the fastest progressively disabling and neurodegenerative cause of death. To optimise the clinical applicability of PET/MRI for diagnosing, differentiating, and tracking PD progression, the emerging novel uses, and current challenges must be identified. This systematic review aimed to present the specific challenges of PET/MRI use in PD. Further, this review aimed to highlight the possible resolution of these challenges, the emerging applications and future direction of PET/MRI use in PD. EBSCOHost (indexing CINAHL Plus, PsycINFO) Ovid (Medline, EMBASE) PubMed, Web of Science, and Scopus from 2006 (the year of first integrated PET/MRI hybrid system) to 30 September 2022 were used to search for relevant primary articles. A total of 933 studies were retrieved and following the screening procedure, 18 peer-reviewed articles were included in this review. This present study is of great clinical relevance and significance, as it informs the reasoning behind hindered widespread clinical use of PET/MRI for PD. Despite this, the emerging applications of image reconstruction developed by PET/MRI research data to the use of fully automated systems show promising and desirable utility. Furthermore, many of the current challenges and limitations can be resolved by using much larger-sampled and longitudinal studies. Meanwhile, the development of new fast-binding tracers that have specific affinity to PD pathological processes is warranted.
Collapse
|
2
|
Fang L, Zhang B, Li B, Zhang X, Zhou X, Yang J, Li A, Shi X, Liu Y, Kreissl M, D'Ascenzo N, Xiao P, Xie Q. Development and evaluation of a new high-TOF-resolution all-digital brain PET system. Phys Med Biol 2024; 69:025019. [PMID: 38100841 DOI: 10.1088/1361-6560/ad164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Objective.Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.Approach.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.9 × 3.9 × 20 mm3lutetium-yttrium oxyorthosilicate crystal coupled with a 3.93 × 3.93 mm2SiPM. The SiPMs analog signals are individually digitized using the multi-voltage threshold (MVT) technology, employing a 1:1:1 coupling configuration.Main results.The brain PET system exhibits a TOF resolution of 249 ps at 5.3 kBq ml-1, an average sensitivity of 22.1 cps kBq-1, and a noise equivalent count rate (NECR) peak of 150.9 kcps at 8.36 kBq ml-1. Furthermore, the mini-Derenzo phantom study demonstrated the system's ability to distinguish rods with a diameter of 2.0 mm. Moreover, incorporating the TOF reconstruction algorithm in an image quality phantom study optimizes the background variability, resulting in reductions ranging from 44% (37 mm) to 75% (10 mm) with comparable contrast. In the human brain imaging study, the SNR improved by a factor of 1.7 with the inclusion of TOF, increasing from 27.07 to 46.05. Time-dynamic human brain imaging was performed, showing the distinctive traits of cortex and thalamus uptake, as well as of the arterial and venous flow with 2 s per time frame.Significance.The system exhibited a good TOF capability, which is coupled with the high sensitivity and count rate performance based on the MVT digital sampling technique. The developed TOF-enabled brain PET system opens the possibility of precise kinetic brain PET imaging, towards new quantitative predictive brain diagnostics.
Collapse
Affiliation(s)
- Lei Fang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ang Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuqing Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Michael Kreissl
- Division of Nuclear Medicine, Deprtment of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| | - Peng Xiao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| |
Collapse
|
3
|
Ruan W, Qin C, Liu F, Pi R, Gai Y, Liu Q, Lan X. Q.Clear reconstruction for reducing the scanning time for 68 Ga-DOTA-FAPI-04 PET/MR imaging. Eur J Nucl Med Mol Imaging 2023; 50:1851-1860. [PMID: 36847826 DOI: 10.1007/s00259-023-06134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE This study aims to determine whether Q.Clear positron emission tomography (PET) reconstruction may reduce tracer injection dose or shorten scanning time in 68Gallium-labelled fibroblast activation protein inhibitor (68 Ga-FAPI) PET/magnetic resonance (MR) imaging. METHODS We retrospectively collected cases of 68 Ga-FAPI whole-body imaging performed on integrated PET/MR. PET images were reconstructed using three different methods: ordered subset expectation maximization (OSEM) reconstruction with full scanning time, OSEM reconstruction with half scanning time, and Q.Clear reconstruction with half scanning time. We then measured standardized uptake values (SUVs) within and around lesions, alongside their volumes. We also evaluated image quality using lesion-to-background (L/B) ratio and signal-to-noise ratio (SNR). We then compared these metrics across the three reconstruction techniques using statistical methods. RESULTS Q.Clear reconstruction significantly increased SUVmax and SUVmean within lesions (more than 30%) and reduced their volumes in comparison with OSEM reconstruction. Background SUVmax also increased significantly, while background SUVmean showed no difference. Average L/B values for Q.Clear reconstruction were only marginally higher than those from OSME reconstruction with half-time. SNR decreased significantly in Q.Clear reconstruction compared with OSEM reconstruction with full time (but not half time). Differences between Q.Clear and OSEM reconstructions in SUVmax and SUVmean values within lesions were significantly correlated with SUVs within lesions. CONCLUSIONS Q.Clear reconstruction was useful for reducing PET injection dose or scanning time while maintaining the image quality. Q.Clear may affect PET quantification, and it is necessary to establish diagnostic recommendations based on Q.Clear results for Q.Clear application.
Collapse
Affiliation(s)
- Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Rundong Pi
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
4
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|