1
|
López-Arredondo A, Cruz-Cardenas JA, Cázares-Preciado JA, Timmins NE, Brunck ME. Neutrophils, an emerging new therapeutic platform. Curr Opin Biotechnol 2024; 87:103106. [PMID: 38490109 DOI: 10.1016/j.copbio.2024.103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Neutrophils possess unique characteristics that render them indispensable to health, and patients with irregular neutrophil counts or functions suffer from increased morbidity and mortality. As neutrophils are short-lived postmitotic cells, genetic aberrations cannot be corrected directly in neutrophils and must be targeted in their progenitors. Neutrophils are increasingly being contemplated for a range of therapeutic applications, including restoration or modulation of immune function and targeting of solid tumors. This review addresses the state-of-the-art in neutrophil transfusions and their possible applications for infectious disease prevention and treatment. It offers a landscape of the most recent gene therapy approaches to address neutrophil-related genetic diseases. We also discuss how ongoing research could broaden the applicability of neutrophil-based therapies to solid cancer treatments and beyond.
Collapse
Affiliation(s)
- Alejandra López-Arredondo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - José A Cruz-Cardenas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - Jorge A Cázares-Preciado
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - Nicholas E Timmins
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Marion Eg Brunck
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico; The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
2
|
Naveh CA, Roberts K, Zakrzewski P, Rice CM, Ponce-Garcia FM, Fleming K, Thompson M, Panyapiean N, Jiang H, Diezmann S, Moura PL, Toye AM, Amulic B. Neutrophils cultured ex vivo from CD34 + stem cells are immature and genetically tractable. J Transl Med 2024; 22:526. [PMID: 38822352 PMCID: PMC11143668 DOI: 10.1186/s12967-024-05337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.
Collapse
Affiliation(s)
- Claire A Naveh
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kiran Roberts
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Przemysław Zakrzewski
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Christopher M Rice
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Fernando M Ponce-Garcia
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Megan Thompson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Nawamin Panyapiean
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Huan Jiang
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Pedro L Moura
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge (MedH), Karolinska Institutet, Huddinge, Sweden
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Borko Amulic
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|