1
|
Yang S, Mukh AA, Abdelatif E, Schmidt A, Batailler C, Ferry T, Lustig S. Bacteriophage therapy as an innovative strategy for the treatment of Periprosthetic Joint Infection: a systematic review. INTERNATIONAL ORTHOPAEDICS 2024; 48:2809-2825. [PMID: 39254722 PMCID: PMC11490438 DOI: 10.1007/s00264-024-06295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Periprosthetic Joint Infection (PJI) following hip and knee arthroplasty is a catastrophic complication in orthopaedic surgery. It has long been a key focus for orthopaedic surgeons in terms of prevention and management. With the increasing incidence of antibiotic resistance in recent years, finding more targeted treatment methods has become an increasingly urgent issue. Bacteriophage Therapy (BT) has emerged as a promising adjunctive treatment for bone and joint infections in recent years. It not only effectively kills bacteria but also demonstrates significant anti-biofilm activity, garnering substantial clinical interest due to its demonstrated efficacy and relatively low incidence of adverse effects. PURPOSE This review aims to systematically evaluate the efficacy and safety of bacteriophage therapy in treating PJI following hip and knee arthroplasty, providing additional reference for its future clinical application. METHODS Following predefined inclusion and exclusion criteria, our team conducted a systematic literature search across seven databases (PubMed, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov, CNKI, and WanFang Database). The search was conducted up to May 2024 and included multiple clinical studies on the use of bacteriophage therapy for treating PJI after hip and knee arthroplasty to assess its efficacy and safety. RESULTS This systematic review included 16 clinical studies after screening, consisting of 15 case reports and one prospective controlled clinical trial, involving a total of 42 patients with PJI treated with bacteriophage therapy. The average patient age was 62.86 years, and 43 joints were treated, with patients undergoing an average of 5.25 surgeries. The most common pathogen in these infections was Staphylococcus aureus, accounting for 18 cases. 33 patients received cocktail therapy, while nine were treated with a single bacteriophage preparation. Additionally, all patients underwent suppressive antibiotic therapy (SAT) postoperatively. All patients were followed up for an average of 13.55 months. There were two cases of recurrence, one of which resulted in amputation one year postoperatively. The remaining patients showed good recovery outcomes. Overall, the results from the included studies indicate that bacteriophage therapy effectively eradicates infectious strains in various cases of PJI, with minimal side effects, demonstrating promising clinical efficacy. CONCLUSION In the treatment of PJI following hip and knee arthroplasty, bacteriophages, whether used alone or in combination as cocktail therapy, have shown therapeutic potential. However, thorough preoperative evaluation is essential, and appropriate bacteriophage types and treatment regimens must be selected based on bacteriological evidence. Future large-scale, randomized controlled, and prospective trials are necessary to validate the efficacy and safety of this therapy.
Collapse
Affiliation(s)
- Shengdong Yang
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- IFSTTAR, LBMC UMR_T9406, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Assala Abu Mukh
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Orthopedics and Traumatology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elsayed Abdelatif
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Department of Orthopedic Surgery and Traumatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Axel Schmidt
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Cécile Batailler
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Lustig
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France.
- IFSTTAR, LBMC UMR_T9406, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
2
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
3
|
Shrestha KR, Kim S, Jo A, Ragothaman M, Yoo SY. In vivo safety evaluation and tracing of arginylglycylaspartic acid-engineered phage nanofiber in murine model. J Mater Chem B 2024; 12:10258-10271. [PMID: 39300937 DOI: 10.1039/d4tb00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The engineered phage YSY184, mimicking the extracellular matrix nanofiber, effectively promotes stem cell differentiation and angiogenesis. This study evaluated its safety in a mouse model, monitoring weight, immunogenicity, spleen immune responses, and macrophage infiltration. Rapid clearance of YSY184 was observed, with peak tissue presence within three hours, significantly reduced by 24 hours, and negligible after one month. No adverse physiological or pathological effects were detected post-administration, affirming YSY184's safety and underscore its potential for therapeutic use, warranting further clinical exploration.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - Sehoon Kim
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - Anna Jo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - Murali Ragothaman
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Santamaría-Corral G, Aguilera-Correa JJ, Esteban J, García-Quintanilla M. Bacteriophage Therapy on an In Vitro Wound Model and Synergistic Effects in Combination with Beta-Lactam Antibiotics. Antibiotics (Basel) 2024; 13:800. [PMID: 39334975 PMCID: PMC11428794 DOI: 10.3390/antibiotics13090800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
One of the primary opportunistic pathogens that can cause a wide range of diseases is Pseudomonas aeruginosa. This microorganism can become resistant to practically every antibacterial currently in use, including beta-lactam antibiotics. Its ability to proliferate as biofilm has been linked to, among other things, the failure of antimicrobial therapies. Due to a variety of virulence factors and host immune system modifications, P. aeruginosa is one of the most significant and common bacteria that colonize wounds and burns. A novel therapeutic option for treating these multidrug-resistant (MDR) bacterial infections is the combination of antibiotics and bacteriophages. This approach has been linked to improved biofilm penetration, a decreased selection of antibiotic and bacteriophage resistance, and an enhanced antibacterial impact. Combining the F1Pa bacteriophage and beta-lactam antibiotics reduced the viability of the mature biofilm of MDR P. aeruginosa strains and suppressed bacterial growth in vitro. F1Pa critically reduced the amount of biofilm that MDR P. aeruginosa clinical strains formed in the in vitro wound model. These findings highlight the bacteriophage F1Pa's therapeutic potential as a prophylactic topical treatment against MDR pseudomonal infections in wounds and burns.
Collapse
Affiliation(s)
- Guillermo Santamaría-Corral
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Meritxell García-Quintanilla
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| |
Collapse
|
5
|
Pirnay JP, Djebara S, Steurs G, Griselain J, Cochez C, De Soir S, Glonti T, Spiessens A, Vanden Berghe E, Green S, Wagemans J, Lood C, Schrevens E, Chanishvili N, Kutateladze M, de Jode M, Ceyssens PJ, Draye JP, Verbeken G, De Vos D, Rose T, Onsea J, Van Nieuwenhuyse B, Soentjens P, Lavigne R, Merabishvili M. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol 2024; 9:1434-1453. [PMID: 38834776 PMCID: PMC11153159 DOI: 10.1038/s41564-024-01705-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
In contrast to the many reports of successful real-world cases of personalized bacteriophage therapy (BT), randomized controlled trials of non-personalized bacteriophage products have not produced the expected results. Here we present the outcomes of a retrospective observational analysis of the first 100 consecutive cases of personalized BT of difficult-to-treat infections facilitated by a Belgian consortium in 35 hospitals, 29 cities and 12 countries during the period from 1 January 2008 to 30 April 2022. We assessed how often personalized BT produced a positive clinical outcome (general efficacy) and performed a regression analysis to identify functional relationships. The most common indications were lower respiratory tract, skin and soft tissue, and bone infections, and involved combinations of 26 bacteriophages and 6 defined bacteriophage cocktails, individually selected and sometimes pre-adapted to target the causative bacterial pathogens. Clinical improvement and eradication of the targeted bacteria were reported for 77.2% and 61.3% of infections, respectively. In our dataset of 100 cases, eradication was 70% less probable when no concomitant antibiotics were used (odds ratio = 0.3; 95% confidence interval = 0.127-0.749). In vivo selection of bacteriophage resistance and in vitro bacteriophage-antibiotic synergy were documented in 43.8% (7/16 patients) and 90% (9/10) of evaluated patients, respectively. We observed a combination of antibiotic re-sensitization and reduced virulence in bacteriophage-resistant bacterial isolates that emerged during BT. Bacteriophage immune neutralization was observed in 38.5% (5/13) of screened patients. Fifteen adverse events were reported, including seven non-serious adverse drug reactions suspected to be linked to BT. While our analysis is limited by the uncontrolled nature of these data, it indicates that BT can be effective in combination with antibiotics and can inform the design of future controlled clinical trials. BT100 study, ClinicalTrials.gov registration: NCT05498363 .
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium.
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-traditional Antibacterial Therapy (ESGNTA), Basel, Switzerland.
| | - Sarah Djebara
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Griet Steurs
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Johann Griselain
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Christel Cochez
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Steven De Soir
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - An Spiessens
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Emily Vanden Berghe
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Sabrina Green
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | | | - Nina Chanishvili
- Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | - Mzia Kutateladze
- Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | | | | | - Jean-Pierre Draye
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Thomas Rose
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Brieuc Van Nieuwenhuyse
- Institute of Experimental and Clinical Research, Pediatric Department, UCLouvain, Brussels, Belgium
| | - Patrick Soentjens
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
6
|
Wang B, Du L, Dong B, Kou E, Wang L, Zhu Y. Current Knowledge and Perspectives of Phage Therapy for Combating Refractory Wound Infections. Int J Mol Sci 2024; 25:5465. [PMID: 38791502 PMCID: PMC11122179 DOI: 10.3390/ijms25105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Wound infection is one of the most important factors affecting wound healing, so its effective control is critical to promote the process of wound healing. However, with the increasing prevalence of multi-drug-resistant (MDR) bacterial strains, the prevention and treatment of wound infections are now more challenging, imposing heavy medical and financial burdens on patients. Furthermore, the diminishing effectiveness of conventional antimicrobials and the declining research on new antibiotics necessitate the urgent exploration of alternative treatments for wound infections. Recently, phage therapy has been revitalized as a promising strategy to address the challenges posed by bacterial infections in the era of antibiotic resistance. The use of phage therapy in treating infectious diseases has demonstrated positive results. This review provides an overview of the mechanisms, characteristics, and delivery methods of phage therapy for combating pathogenic bacteria. Then, we focus on the clinical application of various phage therapies in managing refractory wound infections, such as diabetic foot infections, as well as traumatic, surgical, and burn wound infections. Additionally, an analysis of the potential obstacles and challenges of phage therapy in clinical practice is presented, along with corresponding strategies for addressing these issues. This review serves to enhance our understanding of phage therapy and provides innovative avenues for addressing refractory infections in wound healing.
Collapse
Affiliation(s)
- Bo Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Lin Du
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Baiping Dong
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Erwen Kou
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Liangzhe Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
7
|
Moghadam MT, Mojtahedi A, Salamy S, Shahbazi R, Satarzadeh N, Delavar M, Ashoobi MT. Phage therapy as a glimmer of hope in the fight against the recurrence or emergence of surgical site bacterial infections. Infection 2024; 52:385-402. [PMID: 38308075 DOI: 10.1007/s15010-024-02178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE Over the last decade, surgery rates have risen alarmingly, and surgical-site infections are expanding these concerns. In spite of advances in infection control practices, surgical infections continue to be a significant cause of death, prolonged hospitalization, and morbidity. As well as the presence of bacterial infections and their antibiotic resistance, biofilm formation is one of the challenges in the treatment of surgical wounds. METHODS This review article was based on published studies on inpatients and laboratory animals receiving phage therapy for surgical wounds, phage therapy for tissue and bone infections treated with surgery to prevent recurrence, antibiotic-resistant wound infections treated with phage therapy, and biofilm-involved surgical wounds treated with phage therapy which were searched without date restrictions. RESULTS It has been shown in this review article that phage therapy can be used to treat surgical-site infections in patients and animals, eliminate biofilms at the surgical site, prevent infection recurrence in wounds that have been operated on, and eradicate antibiotic-resistant infections in surgical wounds, including multi-drug resistance (MDR), extensively drug resistance (XDR), and pan-drug resistance (PDR). A cocktail of phages and antibiotics can also reduce surgical-site infections more effectively than phages alone. CONCLUSION In light of these encouraging results, clinical trials and research with phages will continue in the near future to treat surgical-site infections, biofilm removal, and antibiotic-resistant wounds, all of which could be used to prescribe phages as an alternative to antibiotics.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shakiba Salamy
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Razieh Shahbazi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naghmeh Satarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Delavar
- Vice President of Health and Executive Vice President, Rey Health Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Reffuveille F, Dghoughi Y, Colin M, Torres MDT, de la Fuente-Nunez C. Antibiofilm approaches as a new paradigm for treating infections. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:023001. [PMID: 39506977 PMCID: PMC11540418 DOI: 10.1088/2516-1091/ad1cd6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The lack of effective antibiotics for drug-resistant infections has led the World Health Organization to declare antibiotic resistance a global priority. Most bacterial infections are caused by microbes growing in structured communities called biofilms. Bacteria growing in biofilms are less susceptible to antibiotics than their planktonic counterparts. Despite their significant clinical implications, bacterial biofilms have not received the attention they warrant, with no approved antibiotics specifically designed for their eradication. In this paper, we aim to shed light on recent advancements in antibiofilm strategies that offer compelling alternatives to traditional antibiotics. Additionally, we will briefly explore the potential synergy between computational approaches, including the emerging field of artificial intelligence, and the accelerated design and discovery of novel antibiofilm molecules in the years ahead.
Collapse
Affiliation(s)
- Fany Reffuveille
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Service de Microbiologie, 51097 Reims, France
| | - Yasser Dghoughi
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Service de Microbiologie, 51097 Reims, France
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
9
|
Suh GA, Ferry T, Abdel MP. Phage Therapy as a Novel Therapeutic for the Treatment of Bone and Joint Infections. Clin Infect Dis 2023; 77:S407-S415. [PMID: 37932115 DOI: 10.1093/cid/ciad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Solutions for bone and joint infection (BJI) are needed where conventional treatments are inadequate. Bacteriophages (phages) are naturally occurring viruses that infect bacteria and have been harnessed for refractory bone and joint infections (BJI) in many case reports. Here we examine the safety and efficacy of English-language published cases of BJI since 2010 with phage therapy. From 33 reported cases of BJI treated with phage therapy, 29 (87%) achieved microbiological or clinical success, 2 (5.9%) relapsed with the same organisms, and 2 (5.9%) with a different organism. Of these 4 relapses, all but 1 had eventual clinical resolution with additional surgery or phage treatments. Eight out of 33 cases (24%) reported mild, transient adverse events with no serious events reported. Further work is needed to understand the true efficacy of phages and the role of phages in BJI. Opportunities lay ahead for thoughtfully designed clinical trials adapted to individualized therapies.
Collapse
Affiliation(s)
- Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester Minnesota, USA
| | - Tristan Ferry
- Department of Infectious and Tropical Diseases, Hospital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester Minnesota, USA
| |
Collapse
|
10
|
Mancuso A, Pipitò L, Rubino R, Distefano SA, Mangione D, Cascio A. Ceftazidime-Avibactam as Osteomyelitis Therapy: A Miniseries and Review of the Literature. Antibiotics (Basel) 2023; 12:1328. [PMID: 37627748 PMCID: PMC10451286 DOI: 10.3390/antibiotics12081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bone and joint infections (BJIs) caused by multidrug-resistant gram-negative bacteria are becoming a concern due to limited therapeutic options. Although not approved for these indications, an ever-growing amount of evidence supports the efficacy and safety of ceftazidime-avibactam as a therapy for osteomyelitis and prosthetic joint infections. Here, we present three cases of difficult-to-treat resistant Pseudomonas aeruginosa osteomyelitis that were successfully treated with ceftazidime-avibactam alone or in combination therapy with fosfomycin and amikacin. Ceftazidime-avibactam was prescribed at a daily dose of 2.5 g every 8 h for 42 days in all cases. One potential drug-related adverse effect was observed, i.e., Clostridioides difficile infection, which occurred after fourteen days of treatment with ceftazidime-avibactam.
Collapse
Affiliation(s)
- Alessandro Mancuso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Luca Pipitò
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Raffaella Rubino
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
- Antimicrobial Stewardship Team, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | | | - Donatella Mangione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
- Antimicrobial Stewardship Team, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
11
|
Santamaría-Corral G, Senhaji-Kacha A, Broncano-Lavado A, Esteban J, García-Quintanilla M. Bacteriophage-Antibiotic Combination Therapy against Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:1089. [PMID: 37508185 PMCID: PMC10376841 DOI: 10.3390/antibiotics12071089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Phage therapy is an alternative therapy that is being used as the last resource against infections caused by multidrug-resistant bacteria after the failure of standard treatments. Pseudomonas aeruginosa can cause pneumonia, septicemia, urinary tract, and surgery site infections mainly in immunocompromised people, although it can cause infections in many different patient profiles. Cystic fibrosis patients are particularly vulnerable. In vitro and in vivo studies of phage therapy against P. aeruginosa include both bacteriophages alone and combined with antibiotics. However, the former is the most promising strategy utilized in clinical infections. This review summarizes the recent studies of phage-antibiotic combinations, highlighting the synergistic effects of in vitro and in vivo experiments and successful treatments in patients.
Collapse
Affiliation(s)
| | - Abrar Senhaji-Kacha
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-Infectious Diseases CIBER, 28029 Madrid, Spain
| | - Antonio Broncano-Lavado
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-Infectious Diseases CIBER, 28029 Madrid, Spain
| | - Meritxell García-Quintanilla
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-Infectious Diseases CIBER, 28029 Madrid, Spain
| |
Collapse
|
12
|
Stipniece L, Rezevska D, Kroica J, Racenis K. Effect of the Biopolymer Carrier on Staphylococcus aureus Bacteriophage Lytic Activity. Biomolecules 2022; 12:1875. [PMID: 36551303 PMCID: PMC9775117 DOI: 10.3390/biom12121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The use of implant materials is always associated with the risk of infection. Moreover, the effectiveness of antibiotics is reduced due to antibiotic-resistant pathogens. Thus, selecting the appropriate alternative antimicrobials for local delivery systems is correlated with successful infection management. We evaluated immobilization of the S. aureus specific bacteriophages in clinically recognized biopolymers, i.e., chitosan and alginate, to control the release profile of the antimicrobials. The high-titre S. aureus specific bacteriophages were prepared from commercial bacteriophage cocktails. The polymer mixtures with the propagated bacteriophages were then prepared. The stability of the S. aureus bacteriophages in the biopolymer solutions was assessed. In the case of chitosan, no plaques indicating the presence of the lytic bacteriophages were observed. The titre reduction of the S. aureus bacteriophages in the Na-alginate was below 1 log unit. Furthermore, the bacteriophages retained their lytic activity in the alginate after crosslinking with Ca2+ ions. The release of the lytic S. aureus bacteriophages from the Ca-alginate matrices in the TRIS-HCl buffer solution (pH 7.4 ± 0.2) was determined. After 72 h-0.292 ± 0.021% of bacteriophages from the Ca-alginate matrices were released. Thus, sustained release of the lytic S. aureus bacteriophages can be ensured.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia
| | - Dace Rezevska
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
- Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
| | - Karlis Racenis
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
- Centre of Nephrology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| |
Collapse
|
13
|
Antimicrobial Treatment of Pseudomonas aeruginosa Severe Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11101432. [PMID: 36290092 PMCID: PMC9598900 DOI: 10.3390/antibiotics11101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogen often encountered in a healthcare setting. It has consistently ranked among the most frequent pathogens seen in nosocomial infections, particularly bloodstream and respiratory tract infections. Aside from having intrinsic resistance to many antibiotics, it rapidly acquires resistance to novel agents. Given the high mortality of pseudomonal infections generally, and pseudomonal sepsis particularly, and with the rise of resistant strains, treatment can be very challenging for the clinician. In this paper, we will review the latest evidence for the optimal treatment of P. aeruginosa sepsis caused by susceptible as well as multidrug-resistant strains including the difficult to treat pathogens. We will also discuss the mode of drug infusion, indications for combination therapy, along with the proper dosing and duration of treatment for various conditions with a brief discussion of the use of non-antimicrobial agents.
Collapse
|