1
|
Lv Y, Yang W, Kannan PR, Zhang H, Zhang R, Zhao R, Kong X. Materials-based hair follicle engineering: Basic components and recent advances. Mater Today Bio 2024; 29:101303. [PMID: 39498149 PMCID: PMC11532916 DOI: 10.1016/j.mtbio.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in biomaterials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited resources and contributes to advancements in research and applications in hair loss treatment, HF development, and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and engineering methods. Recent studies have focused on efficiently combining these components and reproducing functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of transplantation into animals to promote mature development.
Collapse
Affiliation(s)
- Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weili Yang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Kim Y, Lee JM, Jang YN, Park AY, Kim S, Kim BJ, Lee JO. Irisin promotes hair growth and hair cycle transition by activating the GSK-3β/β-catenin pathway. Exp Dermatol 2024; 33:e15155. [PMID: 39133009 PMCID: PMC11605494 DOI: 10.1111/exd.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 08/13/2024]
Abstract
Hair loss affects men and women of all ages. Myokines, which are mainly secreted by skeletal muscles during exercise, have numerous health benefits. VEGF, IGF-1, FGF and irisin are reprehensive myokines. Although VEGF, IGF-1 and FGF are positively associated with hair growth, few studies have researched the effects of irisin on hair growth. Here, we investigated whether irisin promotes hair growth using in vitro, ex vivo and in vivo patch assays, as well as mouse models. We show that irisin increases proliferation, alkaline phosphatase (ALP) activity and mitochondrial membrane potential in human dermal papilla cells (hDPCs). Irisin activated the Wnt/β-catenin signalling pathway, thereby upregulating Wnt5a, Wnt10b and LEF-1, which play an important role in hair growth. Moreover, irisin enhanced human hair shaft elongation. In vivo, patch assays revealed that irisin promotes the generation of new hair follicles, accelerates entry into the anagen phase, and significantly increases hair growth in C57BL/6 mice. However, XAV939, a Wnt/β-catenin signalling inhibitor, suppressed the irisin-mediated increase in hair shaft and hair growth. These results indicate that irisin increases hair growth via the Wnt/β-catenin pathway and highlight its therapeutic potential in hair loss treatment.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Jung Min Lee
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - You Na Jang
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - A. Yeon Park
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Su‐Young Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - Beom Joon Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - Jung Ok Lee
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
3
|
Xing Y, Xiang F, Guo H, Gong H, Li Y. Reversibly immortalization establishes a hair follicle stem cell line with hair follicle reconstruction ability. Exp Dermatol 2024; 33:e14999. [PMID: 38284187 DOI: 10.1111/exd.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Hair follicle stem cells (HFSCs) play critical roles in the periodic regeneration of hair follicles. HFSCs are also a good model for stem cell biology research. However, no stable mouse HFSC cell line has been reported, which restricts the research and application of HFSCs. We isolated HFSCs from mouse hair follicles and immortalized them by inducing a reversible SV40 large T antigen. Through monoclonal screening, we identified a reversibly immortalized cell line, immortalized HFSC (iHFSC2). RNA sequencing, fluorescence-activated cell sorting, western blotting and immunofluorescence experiments revealed that the expression patterns of iHFSC2 and HFSC were similar at the protein and mRNA levels. After that, iHFSC2s were passaged and morphologically monitored for up to 40 times to detect their long-term culture potential. The long-term cultured iHFSC2 could regenerate hair follicles with complete hair follicle structure and HFSCs in the bulge area. This work successfully established an HFSC cell line with the ability of hair follicle reconstruction.
Collapse
Affiliation(s)
- Yizhan Xing
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Fei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, PR China
| | - Haiying Guo
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Hao Gong
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| |
Collapse
|
4
|
Wang T, Song Y, Yang L, Liu W, He Z, Shi Y, Song B, Yu Z. Photobiomodulation Facilitates Rat Cutaneous Wound Healing by Promoting Epidermal Stem Cells and Hair Follicle Stem Cells Proliferation. Tissue Eng Regen Med 2024; 21:65-79. [PMID: 37882982 PMCID: PMC10764690 DOI: 10.1007/s13770-023-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Cutaneous wound healing represents a common fundamental phenomenon requiring the participation of cells of distinct types and a major concern for the public. Evidence has confirmed that photobiomodulation (PBM) using near-infrared (NIR) can promote wound healing, but the cells involved and the precise molecular mechanisms remain elusive. METHODS Full-thickness skin defects with a diameter of 1.0 cm were made on the back of rats and randomly divided into the control group, 10 J, 15 J, and 30 J groups. The wound healing rate at days 4, 8, and 12 postoperatively was measured. HE and Masson staining was conducted to reveal the histological characteristics. Immunofluorescence staining was performed to label the epidermal stem cells (ESCs) and hair follicle stem cells (HFSCs). Western blot was performed to detect the expressions of proteins associated with ESCs and HFSCs. Cutaneous wound tissues were collected for RNA sequencing. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes analysis was performed, and the hub genes were identified using CytoHubba and validated by qRT-PCR. RESULTS PBM can promote reepithelialization, extracellular matrix deposition, and wound healing, increase the number of KRT14+/PCNA+ ESCs and KRT15+/PCNA+ HFSCs, and upregulate the protein expression of P63, Krt14, and PCNA. Three hundred and sixty-six differentially expressed genes (DEGs) and 7 hub genes including Sox9, Krt5, Epcam, Cdh1, Cdh3, Dsp, and Pkp3 were identified. These DEGs are enriched in skin development, cell junction, and cadherin binding involved in cell-cell adhesion etc., while these hub genes are related to skin derived stem cells and cell adhesion. CONCLUSION PBM accelerates wound healing by enhancing reepithelialization through promoting ESCs and HFSCs proliferation and elevating the expression of genes associated with stem cells and cell adhesion. This may provide a valuable alternative strategy to promote wound healing and reepithelialization by modulating the proliferation of skin derived stem cells and regulating genes related to cell adhesion.
Collapse
Affiliation(s)
- Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Liu Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhen'an He
- Shaanxi Institute of Medical Device Quality Inspection, Xi'an, 712046, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
5
|
Novis T, Takiya CM. Skin Resident Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:205-249. [DOI: 10.1016/b978-0-443-15289-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Soe ZC, Ei ZZ, Visuttijai K, Chanvorachote P. Potential Natural Products Regulation of Molecular Signaling Pathway in Dermal Papilla Stem Cells. Molecules 2023; 28:5517. [PMID: 37513389 PMCID: PMC10384366 DOI: 10.3390/molecules28145517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Stem cells have demonstrated significant potential for tissue engineering and repair, anti-aging, and rejuvenation. Hair follicle stem cells can be found in the dermal papilla at the base of the follicle and the bulge region, and they have garnered increased attention because of their potential to regenerate hair as well as their application for tissue repair. In recent years, these cells have been shown to affect hair restoration and prevent hair loss. These stem cells are endowed with mesenchymal characteristics and exhibit self-renewal and can differentiate into diverse cell types. As research in this field continues, it is probable that insights regarding stem cell maintenance, as well as their self-renewal and differentiation abilities, will benefit the application of these cells. In addition, an in-depth discussion is required regarding the molecular basis of cellular signaling and the influence of nature-derived compounds in stimulating the stemness properties of dermal papilla stem cells. This review summarizes (i) the potential of the mesenchymal cells component of the hair follicle as a target for drug action; (ii) the molecular mechanism of dermal papilla stem cells for maintenance of their stem cell function; and (iii) the positive effects of the natural product compounds in stimulating stemness in dermal papilla stem cells. Together, these insights may help facilitate the development of novel effective hair loss prevention and treatment.
Collapse
Affiliation(s)
- Zar Chi Soe
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|