1
|
Selvavinayagam ST, Sankar S, Yong YK, Murugesan A, Suvaithenamudhan S, Hemashree K, Rajeshkumar M, Kumaresan A, Pandey RP, Shanmugam S, Arthydevi P, Kumar MS, Gopalan N, Kannan M, Cheedarla N, Tan HY, Zhang Y, Larsson M, Balakrishnan P, Velu V, Byrareddy SN, Shankar EM, Raju S. Emergence of SARS-CoV-2 omicron variant JN.1 in Tamil Nadu, India - Clinical characteristics and novel mutations. Sci Rep 2024; 14:17476. [PMID: 39080396 PMCID: PMC11289243 DOI: 10.1038/s41598-024-68678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
In December 2023, we observed a notable shift in the COVID-19 landscape, when JN.1 omicron emerged as the predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive clinical specimens, followed by sequence analysis. Mutations within the spike protein sequences were analysed and compared with the previously reported lineages and sub-lineages, to identify the potential impact of the unique mutations on protein structure and possible alterations in the functionality. Several unique and dynamic mutations were identified herein. Molecular docking analysis showed changes in the binding affinity, and key interacting residues of wild-type and mutated structures with key host cell receptors of SARS-CoV-2 entry viz., ACE2, CD147, CD209L and AXL. Our data provides key insights on the emergence of newer variants and highlights the necessity for robust and sustained global genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Sathish Sankar
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, 625 512, India
| | - Suvaiyarasan Suvaithenamudhan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Ramendra P Pandey
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, 248 007, India
| | - Saravanan Shanmugam
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Masilamani Senthil Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Hong Y Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Ying Zhang
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58 185, Linköping, Sweden
| | - Pachamuthu Balakrishnan
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, 600 078, India
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India.
| |
Collapse
|
2
|
Mwangi LW, Omuse G, Adam R, Ong’ete G, Matheka C, Mugaine P, Sayed S, Maina D. Post-vaccination SARS-CoV-2 IgG spike antibody responses among clinical and non-clinical healthcare workers at a tertiary facility in Kenya. PLoS One 2024; 19:e0299302. [PMID: 38573911 PMCID: PMC10994319 DOI: 10.1371/journal.pone.0299302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Following the coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, vaccination became the main strategy against disease severity and even death. Healthcare workers were considered high-risk for infection and, thus, were prioritised for vaccination. METHODS A follow-up to a SARS-CoV-2 seroprevalence study among clinical and non-clinical HCWs at the Aga Khan University Hospital, Nairobi, we assessed how vaccination influenced SARS-CoV-2 anti-spike IgG antibody responses and kinetics. Blood samples were drawn at two points spanning 6 to 18 months post-vaccination, and SARS-CoV-2 spike antibody levels were determined by enzyme-linked immunosorbent assay. RESULTS Almost all participants, 98% (961/981), received a second vaccine dose, and only 8.5% (83/981) received a third dose. SARS-CoV-2 spike IgG antibodies were detected in 100% (961/961) and 92.7% (707/762) of participants who received two vaccine doses, with the first and second post-vaccine test, respectively, and in 100% (83/83) and 91.4% (64/70) of those who received three vaccine doses at the first and second post-vaccine test, respectively. Seventy-six participants developed mild infections, not requiring hospitalisation even after receiving primary vaccination. Receiving three vaccine doses influenced the anti-spike S/Co at both the first (p<0.001) and second post-vaccination testing (p<0.001). Of those who tested SARS-CoV-2 positive, the anti-spike S/Co ratio was significantly higher than those who were seronegative at the first post-vaccine test (p = 0.001). Side effects were reported by almost half of those who received the first dose, 47.3% (464/981), 28.9% (278/961) and 25.3% (21/83) of those who received the second and third vaccine doses, respectively. DISCUSSION AND CONCLUSION Following the second dose of primary vaccination, all participants had detectable anti-spike antibodies. The observed mild breakthrough infections may have been due to emerging SARS-CoV-2 variants. Findings suggest that although protective antibodies are induced, vaccination protected against COVID-19 disease severity and not necessarily infection.
Collapse
Affiliation(s)
- Lucy W. Mwangi
- Research Division, Medical College East Africa, The Aga Khan University Hospital, Nairobi, Kenya
| | - Geoffrey Omuse
- Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Nairobi, Kenya
| | - Rodney Adam
- Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Nairobi, Kenya
- Department of Internal Medicine, The Aga Khan University Hospital, Nairobi, Kenya
| | - George Ong’ete
- Occupational Safety and Health, The Aga Khan University Hospital, Nairobi, Kenya
| | - Cyrus Matheka
- Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Nairobi, Kenya
| | - Patrick Mugaine
- Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Nairobi, Kenya
| | - Shahin Sayed
- Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Nairobi, Kenya
| | - Daniel Maina
- Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Nairobi, Kenya
| |
Collapse
|
3
|
Selvavinayagam ST, Suvaithenamudhan S, Yong YK, Hemashree K, Rajeshkumar M, Kumaresan A, Arthydevi P, Kannan M, Gopalan N, Vignesh R, Murugesan A, Sivasankaran MP, Sankar S, Cheedarla N, Anshad AR, Govindaraj S, Zhang Y, Tan HY, Larsson M, Saravanan S, Balakrishnan P, Kulanthaivel L, Singh K, Joseph N, Velu V, Byrareddy SN, Shankar EM, Raju S. Genomic surveillance of omicron B.1.1.529 SARS-CoV-2 and its variants between December 2021 and March 2023 in Tamil Nadu, India-A state-wide prospective longitudinal study. J Med Virol 2024; 96:e29456. [PMID: 38329187 DOI: 10.1002/jmv.29456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
A state-wide prospective longitudinal investigation of the genomic surveillance of the omicron B.1.1.529 SARS-CoV-2 variant and its sublineages in Tamil Nadu, India, was conducted between December 2021 and March 2023. The study aimed to elucidate their mutational patterns and their genetic interrelationship in the Indian population. The study identified several unique mutations at different time-points, which likely could attribute to the changing disease characteristics, transmission, and pathogenicity attributes of omicron variants. The study found that the omicron variant is highly competent in its mutating potentials, and that it continues to evolve in the general population, likely escaping from natural as well as vaccine-induced immune responses. Our findings suggest that continuous surveillance of viral variants at the global scenario is warranted to undertake intervention measures against potentially precarious SARS-CoV-2 variants and their evolution.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Suvaiyarasan Suvaithenamudhan
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
- School of Biomedical Sciences, Sri Balaji Vidyapeeth, (Deemed to be University), Pondicherry, India
| | - Yean K Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Ramachandran Vignesh
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, Tamil Nadu, India
| | | | - Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Narayanaiah Cheedarla
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Abdul R Anshad
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sakthivel Govindaraj
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Ying Zhang
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Hong Y Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shanmugam Saravanan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Pachamuthu Balakrishnan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Langeswaran Kulanthaivel
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kamalendra Singh
- Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Narcisse Joseph
- Department of Medical Microbiology, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Selvavinayagam ST, Karishma SJ, Hemashree K, Yong YK, Suvaithenamudhan S, Rajeshkumar M, Aswathy B, Kalaivani V, Priyanka J, Kumaresan A, Kannan M, Gopalan N, Chandramathi S, Vignesh R, Murugesan A, Anshad AR, Ganesh B, Joseph N, Babu H, Govindaraj S, Larsson M, Kandasamy SL, Palani S, Singh K, Byrareddy SN, Velu V, Shankar EM, Raju S. Clinical characteristics and novel mutations of omicron subvariant XBB in Tamil Nadu, India - a cohort study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 19:100272. [PMID: 38076717 PMCID: PMC10709680 DOI: 10.1016/j.lansea.2023.100272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 04/14/2024]
Abstract
BACKGROUND Despite the continued vaccination efforts, there had been a surge in breakthrough infections, and the emergence of the B.1.1.529 omicron variant of SARS-CoV-2 in India. There is a paucity of information globally on the role of newer XBB variants in community transmission. Here, we investigated the mutational patterns among hospitalised patients infected with the XBB omicron sub-variant, and checked if there was any association between the rise in the number of COVID-19 cases and the observed novel mutations in Tamil Nadu, India. METHODS Nasopharyngeal and oropharyngeal swabs, collected from symptomatic and asymptomatic COVID-19 patients were subjected to real-time PCR followed by Next Generation Sequencing (NGS) to rule out the ambiguity of mutations in viruses isolated from the patients (n = 98). Using the phylogenetic association, the mutational patterns were used to corroborate clinico-demographic characteristics and disease severity among the patients. FINDINGS Overall, we identified 43 mutations in the S gene across 98 sequences, of which two were novel mutations (A27S and T747I) that have not been reported previously with XBB sub-variants in the available literature. Additionally, the XBB sequences from our cohort had more mutations than omicron B.1.1.529. The phylogenetic analysis comprising six major branches clearly showed convergent evolution of XBB. Our data suggests that age, and underlying conditions (e.g., diabetes, hypertension, and cardiovascular disease) or secondary complications confers increased susceptibility to infection rather than vaccination status or prior exposure. Many vaccinated individuals showed evidence of a breakthrough infection, with XBB.3 being the predominant variant identified in the study population. INTERPRETATION Our study indicates that the XBB variant is highly evasive from available vaccines and may be more transmissible, and potentially could emerge as the 'next' predominant variant, which likely could overwhelm the existing variants of SARS-CoV-2 omicron variants. FUNDING National Health Mission (India), SIDASARC, VINNMER (Sweden), ORIP/NIH (USA).
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Sree J. Karishma
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor 43 900, Malaysia
| | - Suvaiyarasan Suvaithenamudhan
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
- Department of Bioinformatics, Bishop Heber College, Tiruchirappalli, Tamil Nadu 620 017, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Bijulal Aswathy
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Vasudevan Kalaivani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Jayapal Priyanka
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Samudi Chandramathi
- Department of Medical Microbiology, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Ramachandran Vignesh
- Faculty of Medicine, Preclinical Department, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak 30450, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | - Abdul R. Anshad
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Balasubramanian Ganesh
- National Institute of Epidemiology, Indian Council of Medical Research, Ayappakkam, Chennai 600 077, India
| | - Narcisse Joseph
- Department of Medical Microbiology, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Hemalatha Babu
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329, USA
| | - Sakthivel Govindaraj
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329, USA
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Shree L. Kandasamy
- Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Sampath Palani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Kamalendra Singh
- Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329, USA
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| |
Collapse
|
5
|
Neale I, Ali M, Kronsteiner B, Longet S, Abraham P, Deeks AS, Brown A, Moore SC, Stafford L, Dobson SL, Plowright M, Newman TAH, Wu MY, Carr EJ, Beale R, Otter AD, Hopkins S, Hall V, Tomic A, Payne RP, Barnes E, Richter A, Duncan CJA, Turtle L, de Silva TI, Carroll M, Lambe T, Klenerman P, Dunachie S. CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study. mBio 2023; 14:e0121223. [PMID: 37655880 PMCID: PMC10653804 DOI: 10.1128/mbio.01212-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.
Collapse
Affiliation(s)
- Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alexandra S. Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lizzie Stafford
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Susan L. Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Thomas A. H. Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mary Y. Wu
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
| | - Crick COVID Immunity Pipeline
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | | | | | | | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Rebecca P. Payne
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher J. A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Teresa Lambe
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - On behalf of the PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
- UK Health Security Agency, Porton Down, United Kingdom
- UK Health Security Agency, London, United Kingdom
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Selvavinayagam ST, Yong YK, Joseph N, Hemashree K, Tan HY, Zhang Y, Rajeshkumar M, Kumaresan A, Kalpana R, Kalaivani V, Monika AVD, Suvaithenamudhan S, Kannan M, Murugesan A, Narayanasamy K, Palani S, Larsson M, Shankar EM, Raju S. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B.1.617.2 and Omicron BA.1.1.529 but not with Omicron BA.1.1 and BA.2 variants. Front Public Health 2022; 10:1018399. [PMID: 36211690 PMCID: PMC9540788 DOI: 10.3389/fpubh.2022.1018399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
The rapid spread of SARS-CoV-2 variants in the global population is indicative of the development of selective advantages in emerging virus strains. Here, we performed a case-control investigation of the clinical and demographic characteristics, clinical history, and virological markers to predict disease progression in hospitalized adults for COVID-19 between December 2021 and January 2022 in Chennai, India. COVID-19 diagnosis was made by a commercial TaqPath COVID-19 RT-PCR, and WGS was performed with the Ion Torrent Next Generation Sequencing System. High-quality (<5% of N) complete sequences of 73 Omicron B.1.1.529 variants were randomly selected for phylogenetic analysis. SARS-CoV-2 viral load, number of comorbidities, and severe disease presentation were independently associated with a shorter time-to-death. Strikingly, this was observed among individuals infected with Omicron BA.2 but not among those with the BA.1.1.529, BA.1.1, or the Delta B.1.617.2 variants. Phylogenetic analysis revealed severe cases predominantly clustering under the BA.2 lineage. Sequence analyses showed 30 mutation sites in BA.1.1.529 and 33 in BA.1.1. The mutations unique to BA.2 were T19I, L24S, P25del, P26del, A27S, V213G, T376A, D405N and R408S. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B.1.617.2 and the Omicron BA.1.1.529 variant but not with Omicron BA.1.1 or BA.2 suggests that the newer strains are largely immune escape variants. The number of vaccine doses received was independently associated with increased odds of developing asymptomatic disease or recovery. We propose that the novel mutations reported herein could likely bear a significant impact on the clinical characteristics, disease progression, and epidemiological aspects of COVID-19. Surging rates of mutations and the emergence of eclectic variants of SARS-CoV-2 appear to impact disease dynamics.
Collapse
Affiliation(s)
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
| | - Narcisse Joseph
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kannan Hemashree
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | | | | | - Raghu Kalpana
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | | | | | | | - Meganathan Kannan
- Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | | | - Sampath Palani
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- Directorate of Public Health and Preventive Medicine, Chennai, India
| |
Collapse
|