1
|
Liu LR, Huang MY, Huang ST, Kung LC, Lee CH, Yao WT, Tsai MF, Hsu CH, Chu YC, Hung FH, Chiu HW. An Arrhythmia classification approach via deep learning using single-lead ECG without QRS wave detection. Heliyon 2024; 10:e27200. [PMID: 38486759 PMCID: PMC10937691 DOI: 10.1016/j.heliyon.2024.e27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Arrhythmia, a frequently encountered and life-threatening cardiac disorder, can manifest as a transient or isolated event. Traditional automatic arrhythmia detection methods have predominantly relied on QRS-wave signal detection. Contemporary research has focused on the utilization of wearable devices for continuous monitoring of heart rates and rhythms through single-lead electrocardiogram (ECG), which holds the potential to promptly detect arrhythmias. However, in this study, we employed a convolutional neural network (CNN) to classify distinct arrhythmias without QRS wave detection step. The ECG data utilized in this study were sourced from the publicly accessible PhysioNet databases. Taking into account the impact of the duration of ECG signal on accuracy, this study trained one-dimensional CNN models with 5-s and 10-s segments, respectively, and compared their results. In the results, the CNN model exhibited the capability to differentiate between Normal Sinus Rhythm (NSR) and various arrhythmias, including Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Wolff-Parkinson-White syndrome (WPW), Ventricular Fibrillation (VF), Ventricular Tachycardia (VT), Ventricular Flutter (VFL), Mobitz II AV Block (MII), and Sinus Bradycardia (SB). Both 10-s and 5-s ECG segments exhibited comparable results, with an average classification accuracy of 97.31%. It reveals the feasibility of utilizing even shorter 5-s recordings for detecting arrhythmias in everyday scenarios. Detecting arrhythmias with a single lead aligns well with the practicality of wearable devices for daily use, and shorter detection times also align with their clinical utility in emergency situations.
Collapse
Affiliation(s)
- Liong-Rung Liu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ming-Yuan Huang
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shu-Tien Huang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Lu-Chih Kung
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chao-hsiung Lee
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Teng Yao
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ming-Feng Tsai
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Hung Hsu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chang Chu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Fei-Hung Hung
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Bioinformatics Data Science Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Shih BH, Yeh CC. Advancements in Artificial Intelligence in Emergency Medicine in Taiwan: A Narrative Review. J Acute Med 2024; 14:9-19. [PMID: 38487757 PMCID: PMC10938302 DOI: 10.6705/j.jacme.202403_14(1).0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/17/2024]
Abstract
The rapid progression of artificial intelligence (AI) in healthcare has greatly influenced emergency medicine, particularly in Taiwan-a nation celebrated for its technological innovation and advanced public healthcare. This narrative review examines the current status of AI applications in Taiwan's emergency medicine and highlights notable achievements and potential areas for growth. AI has wide capabilities encompass a broad range, including disease prediction, diagnostic imaging interpretation, and workflow enhancement. While the integration of AI presents promising advancements, it is not devoid of challenges. Concerns about the interpretability of AI models, the importance of dataset accuracy, the necessity for external validation, and ethical quandaries emphasize the need for a balanced approach. Regulatory oversight also plays a crucial role in ensuring the safe and effective deployment of AI tools in clinical settings. As its footprint continues to expand in medical education and other areas, addressing these challenges is imperative to harness the full potential of AI for transforming emergency medicine in Taiwan.
Collapse
Affiliation(s)
- Bing-Hung Shih
- Cathay General Hospital Department of Emergency Medicine Taipei Taiwan
| | - Chien-Chun Yeh
- Cathay General Hospital Department of Emergency Medicine Taipei Taiwan
| |
Collapse
|
3
|
Bednorz A, Mak JKL, Jylhävä J, Religa D. Use of Electronic Medical Records (EMR) in Gerontology: Benefits, Considerations and a Promising Future. Clin Interv Aging 2023; 18:2171-2183. [PMID: 38152074 PMCID: PMC10752027 DOI: 10.2147/cia.s400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/05/2023] [Indexed: 12/29/2023] Open
Abstract
Electronic medical records (EMRs) have many benefits in clinical research in gerontology, enabling data analysis, development of prognostic tools and disease risk prediction. EMRs also offer a range of advantages in clinical practice, such as comprehensive medical records, streamlined communication with healthcare providers, remote data access, and rapid retrieval of test results, ultimately leading to increased efficiency, enhanced patient safety, and improved quality of care in gerontology, which includes benefits like reduced medication use and better patient history taking and physical examination assessments. The use of artificial intelligence (AI) and machine learning (ML) approaches on EMRs can further improve disease diagnosis, symptom classification, and support clinical decision-making. However, there are also challenges related to data quality, data entry errors, as well as the ethics and safety of using AI in healthcare. This article discusses the future of EMRs in gerontology and the application of AI and ML in clinical research. Ethical and legal issues surrounding data sharing and the need for healthcare professionals to critically evaluate and integrate these technologies are also emphasized. The article concludes by discussing the challenges related to the use of EMRs in research as well as in their primary intended use, the daily clinical practice.
Collapse
Affiliation(s)
- Adam Bednorz
- John Paul II Geriatric Hospital, Katowice, Poland
- Institute of Psychology, Humanitas Academy, Sosnowiec, Poland
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), University of Tampere, Tampere, Finland
| | - Dorota Religa
- Division of Clinical Geriatrics, Department of Neurobiology, Care sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
4
|
Woodman RJ, Mangoni AA. A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future. Aging Clin Exp Res 2023; 35:2363-2397. [PMID: 37682491 PMCID: PMC10627901 DOI: 10.1007/s40520-023-02552-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The increasing access to health data worldwide is driving a resurgence in machine learning research, including data-hungry deep learning algorithms. More computationally efficient algorithms now offer unique opportunities to enhance diagnosis, risk stratification, and individualised approaches to patient management. Such opportunities are particularly relevant for the management of older patients, a group that is characterised by complex multimorbidity patterns and significant interindividual variability in homeostatic capacity, organ function, and response to treatment. Clinical tools that utilise machine learning algorithms to determine the optimal choice of treatment are slowly gaining the necessary approval from governing bodies and being implemented into healthcare, with significant implications for virtually all medical disciplines during the next phase of digital medicine. Beyond obtaining regulatory approval, a crucial element in implementing these tools is the trust and support of the people that use them. In this context, an increased understanding by clinicians of artificial intelligence and machine learning algorithms provides an appreciation of the possible benefits, risks, and uncertainties, and improves the chances for successful adoption. This review provides a broad taxonomy of machine learning algorithms, followed by a more detailed description of each algorithm class, their purpose and capabilities, and examples of their applications, particularly in geriatric medicine. Additional focus is given on the clinical implications and challenges involved in relying on devices with reduced interpretability and the progress made in counteracting the latter via the development of explainable machine learning.
Collapse
Affiliation(s)
- Richard J Woodman
- Centre of Epidemiology and Biostatistics, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
5
|
Irmici G, Cè M, Caloro E, Khenkina N, Della Pepa G, Ascenti V, Martinenghi C, Papa S, Oliva G, Cellina M. Chest X-ray in Emergency Radiology: What Artificial Intelligence Applications Are Available? Diagnostics (Basel) 2023; 13:diagnostics13020216. [PMID: 36673027 PMCID: PMC9858224 DOI: 10.3390/diagnostics13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Due to its widespread availability, low cost, feasibility at the patient's bedside and accessibility even in low-resource settings, chest X-ray is one of the most requested examinations in radiology departments. Whilst it provides essential information on thoracic pathology, it can be difficult to interpret and is prone to diagnostic errors, particularly in the emergency setting. The increasing availability of large chest X-ray datasets has allowed the development of reliable Artificial Intelligence (AI) tools to help radiologists in everyday clinical practice. AI integration into the diagnostic workflow would benefit patients, radiologists, and healthcare systems in terms of improved and standardized reporting accuracy, quicker diagnosis, more efficient management, and appropriateness of the therapy. This review article aims to provide an overview of the applications of AI for chest X-rays in the emergency setting, emphasizing the detection and evaluation of pneumothorax, pneumonia, heart failure, and pleural effusion.
Collapse
Affiliation(s)
- Giovanni Irmici
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Elena Caloro
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Natallia Khenkina
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Gianmarco Della Pepa
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Velio Ascenti
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Carlo Martinenghi
- Radiology Department, San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Sergio Papa
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milan, Italy
| | - Giancarlo Oliva
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| |
Collapse
|