1
|
Yan Y, Zhang W, Wang Y, Yi C, Yu B, Pang X, Li K, Li H, Dai Y. Crosstalk between intestinal flora and human iron metabolism: the role in metabolic syndrome-related comorbidities and its potential clinical application. Microbiol Res 2024; 282:127667. [PMID: 38442456 DOI: 10.1016/j.micres.2024.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.
Collapse
Affiliation(s)
- Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yulin Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoli Pang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunyang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuHu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Park J, Woo SJ, Hong Y, Lee JJ, Hong JY. Association between the Respiratory Microbiome and Plasma Microbial Extracellular Vesicles in Intubated Patients. Microorganisms 2023; 11:2128. [PMID: 37763972 PMCID: PMC10537887 DOI: 10.3390/microorganisms11092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular vesicles (EVs) regulate various cellular and immunological functions in human diseases. There is growing interest in the clinical role of microbial EVs in pneumonia. However, there is a lack of research on the correlation between lung microbiome with microbial EVs and the microbiome of other body sites in pneumonia. We investigated the co-occurrence of lung microbiome and plasma microbe-derived EVs (mEVs) in 111 samples obtained from 60 mechanically ventilated patients (41 pneumonia and 19 non-pneumonia cases). The microbial correlation between the two samples was compared between the pneumonia and non-pneumonia cases. Bacterial composition of the plasma mEVs was distinct from that of the lung microbiome. There was a significantly higher correlation between lung microbiome and plasma mEVs in non-pneumonia individuals compared to pneumonia patients. In particular, Acinetobacter and Lactobacillus genera had high correlation coefficients in non-pneumonia patients. This indicates a beneficial effect of mEVs in modulating host lung immune response through EV component transfer.
Collapse
Affiliation(s)
- Jinkyeong Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Seong Ji Woo
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
| | - Yoonki Hong
- Department of Internal Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea;
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
| | - Ji Young Hong
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| |
Collapse
|
3
|
Andolfo I, Monaco V, Cozzolino F, Rosato BE, Marra R, Cerbone V, Pinto VM, Forni GL, Unal S, Iolascon A, Monti M, Russo R. Proteome alterations in erythrocytes with PIEZO1 gain-of-function mutations. Blood Adv 2023; 7:2681-2693. [PMID: 36595486 PMCID: PMC10333744 DOI: 10.1182/bloodadvances.2022008673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Gain-of-function mutations in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS) or hereditary xerocytosis, an autosomal dominant hemolytic anemia characterized by high reticulocyte count, a tendency to macrocytosis, and mild jaundice, as well as by other variably penetrant clinical features, such as perinatal edema, severe thromboembolic complications after splenectomy, and hepatic iron overload. PIEZO1 mutations in DHS lead to slowed inactivation kinetics of the ion channel and/or facilitation of channel opening in response to physiological stimuli. To characterize the alterations of red blood cell proteome in patients with mutated PIEZO1, we used a differential approach to compare the proteome of patients with DHS (16 patients from 13 unrelated ancestries) vs healthy individuals. We identified new components in the regulation of the complex landscape of erythrocytes ion and volume balance mediated by PIEZO1. Specifically, the main impaired processes in patients with DHS were ion homeostasis, transmembrane transport, regulation of vesicle-mediated transport, and the proteasomal catabolic process. Functional assays demonstrated coexpression of PIEZO1 and band 3 when PIEZO1 was activated. Moreover, the alteration of the vesicle-mediated transport was functionally demonstrated by an increased vesiculation rate in patients with DHS compared with healthy controls. This finding also provides an explanation of the pathogenetic mechanism underlying the increased thrombotic rate observed in these patients. Finally, the newly identified proteins, involved in the intracellular signaling pathways altered by PIEZO1 mutations, could be used in the future as potential druggable targets in DHS.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
| | - Vittoria Monaco
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Flora Cozzolino
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
| | | | - Valeria Maria Pinto
- Centro della Microcitemia, delle Anemie Congenite e dei Disordini del Metabolismo del Ferro, EO Ospedali Galliera, Genoa, Italy
| | - Gian Luca Forni
- Centro della Microcitemia, delle Anemie Congenite e dei Disordini del Metabolismo del Ferro, EO Ospedali Galliera, Genoa, Italy
| | - Sule Unal
- Research Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Department of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Franco Salvatore, Napoli, Italy
| |
Collapse
|