1
|
Golden MM, Heppe AC, Zaremba CL, Wuest WM. Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii. RSC Chem Biol 2024; 5:d4cb00175c. [PMID: 39372678 PMCID: PMC11446287 DOI: 10.1039/d4cb00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
It is estimated that by 2050, bacterial infections will cause 1.8 million more deaths than cancer annually, and the current lack of antibiotic drug discovery is only exacerbating the crisis. Two pathogens in particular, Gram-negative bacteria A. baumannii and P. aeruginosa, are of grave concern because of their heightened multi-drug resistance due to a dense, impermeable outer membrane. However, targeting specific cellular processes may prove successful in overcoming bacterial resistance. This review will concentrate on a novel approach to combatting pathogenicity by disarming bacteria through the disruption of metal homeostasis to reduce virulence and enhance antibiotic uptake. The varying levels of success in bringing metallophores to clinical trials, with currently only one FDA-approved siderophore antibiotic to date, will also be detailed.
Collapse
Affiliation(s)
| | - Amelia C Heppe
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Cassandra L Zaremba
- Department of Chemistry and Biochemistry, Denison University Granville OH 43023 USA
| | - William M Wuest
- Department of Chemistry, Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Emory University Atlanta GA 30322 USA
| |
Collapse
|
2
|
Torres-Escobar A, Wilkins A, Juárez-Rodríguez MD, Circu M, Latimer B, Dragoi AM, Ivanov SS. Iron-depleting nutritional immunity controls extracellular bacterial replication in Legionella pneumophila infections. Nat Commun 2024; 15:7848. [PMID: 39245746 PMCID: PMC11381550 DOI: 10.1038/s41467-024-52184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
The accidental human pathogen Legionella pneumophila (Lp) is the etiological agent for a severe atypical pneumonia known as Legionnaires' disease. In human infections and animal models of disease alveolar macrophages are the primary cellular niche that supports bacterial replication within a unique intracellular membrane-bound organelle. The Dot/Icm apparatus-a type IV secretion system that translocates ~300 bacterial proteins within the cytosol of the infected cell-is a central virulence factor required for intracellular growth. Mutant strains lacking functional Dot/Icm apparatus are transported to and degraded within the lysosomes of infected macrophages. The early foundational work from Dr. Horwitz's group unequivocally established that Legionella does not replicate extracellularly during infection-a phenomenon well supported by experimental evidence for four decades. Our data challenges this paradigm by demonstrating that macrophages and monocytes provide the necessary nutrients and support robust Legionella extracellular replication. We show that the previously reported lack of Lp extracellular replication is not a bacteria intrinsic feature but rather a result of robust restriction by serum-derived nutritional immunity factors. Specifically, the host iron-sequestering protein Transferrin is identified here as a critical suppressor of Lp extracellular replication in an iron-dependent manner. In iron-overload conditions or in the absence of Transferrin, Lp bypasses growth restriction by IFNγ-primed macrophages though extracellular replication. It is well established that certain risk factors associated with development of Legionnaires' disease, such as smoking, produce a chronic pulmonary environment of iron-overload. Our work indicates that iron-overload could be an important determinant of severe infection by allowing Lp to overcome nutritional immunity and replicate extracellularly, which in turn would circumvent intracellular cell intrinsic host defenses. Thus, we provide evidence for nutritional immunity as a key underappreciated host defense mechanism in Legionella pathogenesis.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ashley Wilkins
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Bacterial Physiology and Metabolism Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - María D Juárez-Rodríguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Brian Latimer
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Stanimir S Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
| |
Collapse
|
3
|
Gucký A, Hamuľaková S. Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives. CNS Drugs 2024; 38:507-532. [PMID: 38829443 PMCID: PMC11182807 DOI: 10.1007/s40263-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Numerous physiological processes happening in the human body, including cerebral development and function, require the participation of biometal ions such as iron, copper, and zinc. Their dyshomeostasis may, however, contribute to the onset of Alzheimer's disease (AD) and potentially other neurodegenerative diseases. Chelation of biometal ions is therefore a therapeutic strategy against AD. This review provides a survey of natural and synthetic chelating agents that are or could potentially be used to target the metal hypothesis of AD. Since metal dyshomeostasis is not the only pathological aspect of AD, and the nature of this disorder is very complex and multifactiorial, the most efficient therapeutics should target as many neurotoxic factors as possible. Various coumarin derivatives match this description and apart from being able to chelate metal ions, they exhibit the capacity to inhibit cholinesterases (ChEs) and monoamine oxidase B (MAO-B) while also possessing antioxidant, anti-inflammatory, and numerous other beneficial effects. Compounds based on the coumarin scaffold therefore represent a desirable class of anti-AD therapeutics.
Collapse
Affiliation(s)
- Adrián Gucký
- Department of Biochemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
4
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2024:10.1007/s11010-024-05056-3. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
5
|
Aljamal D, Iyengar PS, Nguyen TT. Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics 2024; 16:750. [PMID: 38931872 PMCID: PMC11207742 DOI: 10.3390/pharmaceutics16060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design.
Collapse
Affiliation(s)
- Danny Aljamal
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Priya S. Iyengar
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Tammy T. Nguyen
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Massachusetts, Worcester, MA 01655, USA
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
6
|
Huelsboemer L, Knoedler L, Kochen A, Yu CT, Hosseini H, Hollmann KS, Choi AE, Stögner VA, Knoedler S, Hsia HC, Pomahac B, Kauke-Navarro M. Cellular therapeutics and immunotherapies in wound healing - on the pulse of time? Mil Med Res 2024; 11:23. [PMID: 38637905 PMCID: PMC11025282 DOI: 10.1186/s40779-024-00528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic, non-healing wounds represent a significant challenge for healthcare systems worldwide, often requiring significant human and financial resources. Chronic wounds arise from the complex interplay of underlying comorbidities, such as diabetes or vascular diseases, lifestyle factors, and genetic risk profiles which may predispose extremities to local ischemia. Injuries are further exacerbated by bacterial colonization and the formation of biofilms. Infection, consequently, perpetuates a chronic inflammatory microenvironment, preventing the progression and completion of normal wound healing. The current standard of care (SOC) for chronic wounds involves surgical debridement along with localized wound irrigation, which requires inpatient care under general anesthesia. This could be followed by, if necessary, defect coverage via a reconstructive ladder utilizing wound debridement along with skin graft, local, or free flap techniques once the wound conditions are stabilized and adequate blood supply is restored. To promote physiological wound healing, a variety of approaches have been subjected to translational research. Beyond conventional wound healing drugs and devices that currently supplement treatments, cellular and immunotherapies have emerged as promising therapeutics that can behave as tailored therapies with cell- or molecule-specific wound healing properties. However, in contrast to the clinical omnipresence of chronic wound healing disorders, there remains a shortage of studies condensing the current body of evidence on cellular therapies and immunotherapies for chronic wounds. This review provides a comprehensive exploration of current therapies, experimental approaches, and translational studies, offering insights into their efficacy and limitations. Ultimately, we hope this line of research may serve as an evidence-based foundation to guide further experimental and translational approaches and optimize patient care long-term.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Leonard Knoedler
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Alejandro Kochen
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Catherine T Yu
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Helia Hosseini
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Katharina S Hollmann
- School of Medicine, University of Wuerzburg, 97070, Würzburg, Germany
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ashley E Choi
- California University of Science and Medicine, Colton, CA, 92324, USA
| | - Viola A Stögner
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Samuel Knoedler
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Henry C Hsia
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Bohdan Pomahac
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
7
|
Jia CL, Li BL, Zhao ZH, Zhang Z, Qi-Chen, Song JX, Gou Y, Gao SY, Sun CS, He Y, Ji ES, Zhao Y. Rosmarinic Acid Liposomes Downregulate Hepcidin Expression via BMP6-SMAD1/5/8 Pathway in Mice with Iron Overload. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04828-9. [PMID: 38175414 DOI: 10.1007/s12010-023-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
The objective of this study is to examine the potential protective effect of rosmarinic acid (RosA) encapsulated within nanoliposomes (RosA-LIP) on hepatic damage induced by iron overload. The characteristics, stability, and release of RosA-LIP in vitro were identified. The mice were randomly assigned to five groups: Control, Model, Model+DFO (DFO), Model+RosA (RosA), and Model+RosA-LIP (RosA-LIP). The iron overload model was induced by administering iron dextran (i.p.). The DFO, RosA, and RosA-LIP groups received iron dextran and were subsequently treated with DFO, RosA, and RosA-LIP for 14 days. We developed a novel formulation of RosA-LIP that exhibited stability and controlled release properties. Firstly, RosA-LIP improved liver function and ameliorated pathological changes in a mouse model of iron overload. Secondly, RosA-LIP demonstrated the ability to enhance the activities of T-SOD, GSH-Px, and CAT, while reducing the levels of MDA and 4-HNE, thereby effectively mitigating oxidative stress damage induced by iron overload. Thirdly, RosA-LIP reduced hepatic iron levels by downregulating FTL, FTH, and TfR1 levels. Additionally, RosA-LIP exerted a suppressive effect on hepcidin expression through the BMP6-SMAD1/5/8 signaling pathway. Furthermore, RosA-LIP upregulated FPN1 expression in both the liver and duodenum, thereby alleviating iron accumulation in these organs in mice with iron overload. Notably, RosA exhibited a comparable iron chelation effect, and RosA-LIP demonstrated superior efficacy in mitigating liver damage induced by excessive iron overload. RosA-LIP exhibited favorable sustained release properties, targeted delivery, and efficient protection against iron overload-induced liver damage. A schematic representation of the proposed protective mechanism of rosmarinic acid liposome during iron overload. Once RosA-LIP is transported into cells, RosA is released. On the one hand, RosA attenuates the BMP6-SMAD1/5/8-SMAD4 signaling pathway activation, leading to inhibiting hepcidin transcription. Then, the declined hepcidin contacted the inhibitory effect of FPN1 in hepatocytes and duodenum, increasing iron mobilization. On the other hand, RosA inhibits TfR1 and ferritin expression, which decreases excessive iron and oxidative damage.
Collapse
Affiliation(s)
- Cui-Ling Jia
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Bo-Liang Li
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Zi-Hao Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, 050200, Hebei Province, China
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Qi-Chen
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Ji-Xian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Yujing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Si-Yu Gao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Chen-Sha Sun
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, 050200, Hebei Province, China.
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, 050200, Hebei, China.
| | - En-Sheng Ji
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China.
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Luquan Xingyuan Road 3, Shijiazhuang, 050200, China.
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, 050013, China.
| |
Collapse
|
8
|
Schreiner OD, Schreiner TG. Iron chelators as a therapeutic option for Alzheimer's disease-A mini-review. FRONTIERS IN AGING 2023; 4:1234958. [PMID: 37602277 PMCID: PMC10433644 DOI: 10.3389/fragi.2023.1234958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative disorders, particularly Alzheimer's disease (AD), remain a great challenge regarding the finding of effective treatment, one main reason being the incomplete understanding of their etiology. With many intensely debated hypotheses, a newer approach based on the impact of iron imbalance in sustaining neurodegeneration in the central nervous system becomes increasingly popular. Altered iron homeostasis leads to increased iron accumulation in specific brain areas, explaining the clinical picture of AD patients. Moreover, growing evidence sustains the significant impact of iron metabolism in relationship to other pathological processes encountered in the AD-affected brain, such as the amyloidogenic pathway, chronic inflammation, or oxidative stress. In this context, this mini-review aims to summarize the novel data from the continuously expanding literature on this topic in a didactic manner. Thus, in the first part, the authors briefly highlight the most relevant aspects related to iron absorption, transport, regulation, and elimination at the cerebral level, focusing on the role of the blood-brain barrier and the newer concept of ferroptosis. Subsequently, currently available iron chelation therapies are discussed, including an overview of the most relevant clinical trials on this topic. In the final part, based on the latest results from in vitro and in vivo studies, new research directions are suggested to enhance the development of effective antidementia therapies.
Collapse
Affiliation(s)
- Oliver Daniel Schreiner
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Medical Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Thomas Gabriel Schreiner
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| |
Collapse
|