1
|
Yu D, Liu M, Ding Q, Wu Y, Wang T, Song L, Li X, Qian K, Cheng Z, Gu M, Li Z. Molecular imaging-guided diagnosis and treatment integration for brain diseases. Biomaterials 2024; 316:123021. [PMID: 39705925 DOI: 10.1016/j.biomaterials.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In practical clinical scenarios, improved diagnostic methods have been developed for the precise visualization of molecular targets using molecular imaging in brain diseases. Recently, the introduction of innovative molecular imaging modalities across both macroscopic and mesoscopic dimensions, with remarkable specificity and spatial resolution, has expanded the scope of applications beyond diagnostic testing, with the potential to guide therapeutic interventions, offering real-time feedback in the context of brain therapy. The molecular imaging-guided integration of diagnosis and treatment holds the potential to revolutionize disease management by enabling the real-time monitoring of treatment responses and therapy adjustments. Given the vibrant and ever-evolving nature of this field, this review provides an integrated picture on molecular image-guided diagnosis and treatment integration for brain diseases involving the basic concepts, significant breakthroughs, and recent trends. In addition, based on the current achievements, some critical challenges are also discussed.
Collapse
Affiliation(s)
- Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Menghao Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Youxian Wu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianqing Wang
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Litong Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoyu Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Meijia Gu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zhiqiang Li
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Shen Z, Tang X, Zhang Y, Jia Y, Guo X, Guo X, Bao J, Xie X, Xing Y, Xing J, Tian S. Efficacy and safety of mesenchymal stem cell therapies for ischemic stroke: a systematic review and meta-analysis. Stem Cells Transl Med 2024; 13:886-897. [PMID: 39159204 PMCID: PMC11386217 DOI: 10.1093/stcltm/szae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The efficacy and safety of mesenchymal stem cells (MSCs) in the treatment of ischemic stroke (IS) remains controversial. Therefore, this study aimed to evaluate the efficacy and safety of MSCs for IS. METHODS A literature search until May 23, 2023, was conducted using PubMed, EMBASE, the Cochrane Library, and the Web of Science to identify studies on stem cell therapy for IS. Interventional and observational clinical studies of MSCs in patients with IS were included, and the safety and efficacy were assessed. Two reviewers extracted data and assessed the quality independently. The meta-analysis was performed using RevMan5.4. RESULTS Fifteen randomized controlled trials (RCTs) and 15 non-randomized trials, including 1217 patients (624 and 593 in the intervention and control arms, respectively), were analyzed. MSCs significantly improved patients' activities of daily living according to the modified Rankin scale (mean difference [MD]: -0.26; 95% confidence interval [CI]: -0.50 to -0.01; P = .04) and National Institutes of Health Stroke Scale score (MD: -1.69; 95% CI: -2.66 to -0.73; P < .001) in RCTs. MSC treatment was associated with lower mortality rates in RCTs (risk ratio: 0.44; 95% CI: 0.28-0.69; P < .001). Fever and headache were among the most reported adverse effects. CONCLUSIONS Based on our review, MSC transplantation improves neurological deficits and daily activities in patients with IS. In the future, prospective studies with large sample sizes are needed for stem cell studies in ischemic stroke. This meta-analysis has been registered at PROSPERO with CRD42022347156.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xian Tang
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yaxin Zhang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yicun Jia
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xin Guo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xiaosu Guo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Junqiang Bao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xiongwei Xie
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yuan Xing
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Jun Xing
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Shujuan Tian
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| |
Collapse
|
3
|
Detante O, Legris L, Moisan A, Rome C. Cell Therapy and Functional Recovery of Stroke. Neuroscience 2024; 550:79-88. [PMID: 38013148 DOI: 10.1016/j.neuroscience.2023.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Stroke is the most common cause of disability. Brain repair mechanisms are often insufficient to allow a full recovery. Stroke damage involve all brain cell type and extracellular matrix which represent the crucial "glio-neurovascular niche" useful for brain plasticity. Regenerative medicine including cell therapies hold great promise to decrease post-stroke disability of many patients, by promoting both neuroprotection and neural repair through direct effects on brain lesion and/or systemic effects such as immunomodulation. Mechanisms of action vary according to each grafted cell type: "peripheral" stem cells, such as mesenchymal stem cells (MSC), can provide paracrine trophic support, and neural stem/progenitor cells (NSC) or neurons can act as direct cells' replacements. Optimal time window, route, and doses are still debated, and may depend on the chosen medicinal product and its expected mechanism such as neuroprotection, delayed brain repair, systemic effects, or graft survival and integration in host network. MSC, mononuclear cells (MNC), umbilical cord stem cells and NSC are the most investigated. Innovative approaches are implemented concerning combinatorial approaches with growth factors and biomaterials such as injectable hydrogels which could protect a cell graft and/or deliver drugs into the post-stroke cavity at chronic stages. Through main publications of the last two decades, we provide in this review concepts and suggestions to improve future translational researches and larger clinical trials of cell therapy in stroke.
Collapse
Affiliation(s)
- Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Loic Legris
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Anaick Moisan
- Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France; Cell Therapy and Engineering Unit, EFS Rhône Alpes, 464 route de Lancey, 38330 Saint Ismier, France.
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
4
|
Pekker E, Priskin K, Szabó-Kriston É, Csányi B, Buzás-Bereczki O, Adorján L, Szukacsov V, Pintér L, Rusvai M, Cooper P, Kiss-Tóth E, Haracska L. Development of a Large-Scale Pathogen Screening Test for the Biosafety Evaluation of Canine Mesenchymal Stem Cells. Biol Proced Online 2023; 25:33. [PMID: 38097939 PMCID: PMC10720183 DOI: 10.1186/s12575-023-00226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The action of mesenchymal stem cells (MSCs) is the subject of intense research in the field of regenerative medicine, including their potential use in companion animals, such as dogs. To ensure the safety of canine MSC batches for their application in regenerative medicine, a quality control test must be conducted in accordance with Good Manufacturing Practices (GMP). Based on guidance provided by the European Medicines Agency, this study aimed to develop and validate a highly sensitive and robust, nucleic acid-based test panel for the detection of various canine pathogens. Analytical sensitivity, specificity, amplification efficiency, and linearity were evaluated to ensure robust assessment. Additionally, viable spike-in controls were used to control for optimal nucleic acid extraction. The conventional PCR-based and real-time PCR-based pathogen assays were evaluated in a real-life setting, by direct testing MSC batches. RESULTS The established nucleic acid-based assays displayed remarkable sensitivity, detecting 100-1 copies/reaction of template DNA. They also exhibited high specificity and efficiency. Moreover, highly effective nucleic acid isolation was confirmed by the sensitive detection of spike-in controls. The detection capacity of our optimized and validated methods was determined by direct pathogen testing of nine MSC batches that displayed unusual phenotypes, such as reduced cell division or other deviating characteristics. Among these MCS batches of uncertain purity, only one tested negative for all pathogens. The direct testing of these samples yielded positive results for important canine pathogens, including tick-borne disease-associated species and viral members of the canine infectious respiratory disease complex (CIRDC). Notably, samples positive for the etiological agents responsible for enteritis (CPV), leptospirosis (Leptospira interrogans), and neosporosis (Neospora caninum) were also identified. Furthermore, we conducted biosafety evaluation of 12 MSC batches intended for therapeutic application. Eleven MSC batches were found to be free of extraneous agents, and only one tested positive for a specific pathogen, namely, canine parvovirus. CONCLUSION In this study, we established and validated reliable, highly sensitive, and accurate nucleic acid-based testing methods for a broad spectrum of canine pathogens.
Collapse
Affiliation(s)
- Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, H-6726, Hungary
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, Szeged, H-6720, Hungary
- Delta Bio 2000 Ltd., Szeged, H-6726, Hungary
| | | | | | | | | | | | - Valéria Szukacsov
- HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, H-6726, Hungary
| | | | | | | | - Endre Kiss-Tóth
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, S10 2RX, Sheffield, UK
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, H-6726, Hungary.
- Delta Bio 2000 Ltd., Szeged, H-6726, Hungary.
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117, Budapest, Hungary.
| |
Collapse
|