1
|
Mokrani D, Luyt CE. Effective strategies for managing trimethoprim-sulfamethoxazole and levofloxacin-resistant Stenotrophomonas maltophilia infections: bridging the gap between scientific evidence and clinical practice. Curr Opin Infect Dis 2024; 37:554-564. [PMID: 39082087 DOI: 10.1097/qco.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
PURPOSE OF REVIEW To discuss the therapeutic options available for the management of difficult-to-treat strains of Stenotrophomonas maltophilia ( Sma ), namely those resistant to trimethoprim-sulfamethoxazole and fluoroquinolones. RECENT FINDINGS Recent pharmacological studies have highlighted the fact that current breakpoints for first-line antibiotics against Sma are too high. In light of these data, it is likely that the prevalence of difficult-to-treat (DTR) Sma is underestimated worldwide. Two promising alternatives for treating DTR strains are cefiderocol and the combination of aztreonam and an L2 inhibitor. However, clinical trials are currently very limited for these antibiotics and no comparative studies have been carried out to date. It is important to note that the clinical efficacy of cefiderocol appears to be inferior to that initially anticipated from in-vitro and animal studies. Consequently, minocycline and ceftazidime may remain viable options if they are used against strains with a low minimum inhibitory concentration. We advise against the use of intravenous polymyxins and tigecycline. Finally, recent literature does not support the systematic use of combination therapy or long-course treatments. In the coming years, phage therapy may become a promising approach against DTR Sma infections. SUMMARY Overall, clinical comparative studies focused on DTR strains are required in order to provide more accurate and actionable information for therapeutic decisions.
Collapse
Affiliation(s)
- David Mokrani
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière
- Sorbonne Université, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
2
|
Asgari M, Rezaeizadeh G, Ghajari G, Azami Z, Behshood P, Talebi F, Piri Gharaghie T. Preparation and Optimization of Hydrophilic Modified Pullulan Encapsulated Tetracycline for Significant Antibacterial and Anti-Biofilm Activity Against Stenotrophomonas maltophilia Isolates. Chem Biodivers 2024:e202402252. [PMID: 39492695 DOI: 10.1002/cbdv.202402252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Stenotrophomonas maltophilia (S. maltophilia), resistant to antibiotics, is a hazardous illness and a well-known worldwide public health issue. The present investigation included the preparation of formulations of tetracycline encapsulated in pullulan (referred to as HM-PULL-Tetracycline). The study aimed to assess the effectiveness of these formulations against strains of S. maltophilia in terms of their antimicrobial and anti-biofilm properties. The physicochemical characteristics of HM-PULL-Tetracycline were analyzed using a field scanning electron microscope, X-ray dispersion, Zeta potential, and dynamic light scattering analysis. The antibacterial and anti-biofilm activity was assessed using minimal biofilm inhibitory concentration and broth micro-dilution. In addition, the biocompatibility of HM-PULL-Tetracycline was assessed by investigating its cytotoxicity on the human diploid fibroblasts (HDF) normal cell line using the MTT test. The HM-PULL-Tetracycline formulation successfully prevented biofilm formation, measuring 179.7±2.66 nm in size and with an encapsulation efficiency of 84.86±3.14 %. It exhibited a biofilm growth inhibition rating of 69 % and significantly down-regulated the expression of the smf-1, rpfF, rmlA, and spgM biofilm genes in S. maltophilia strains (p<0.05). Furthermore, the HM-PULL-Tetracycline formulation exhibited a 4 to 6-fold increase in antibacterial efficacy compared to unbound tetracycline. The HM-PULL-Tetracycline formulation demonstrated cell viability of over 90 % at all doses tested against HDF normal cells. The findings of the current investigation demonstrate that HM-PULL-Tetracycline enhances the bactericidal and anti-biofilm properties without causing harm to healthy human cells. This suggests that Could be a promising approach for medication administration.
Collapse
Affiliation(s)
- Mahtab Asgari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ghazal Ghajari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Azami
- Biotechnology Research Center, Islamic Azad University, East-Tehran Branch, Tehran, Iran
| | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Talebi
- Department of Microbiology, Faculty of Biological Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tohid Piri Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Bahrami M, Bostanghadiri N, Goudarzi M, Khodaei N, Hashemi A. Antibiotic Resistance and Virulence Factors in Clinical Isolates of Stenotrophomonas maltophilia from Hospitalized Patients in Tehran, Iran. Int J Microbiol 2024; 2024:8224242. [PMID: 39380784 PMCID: PMC11461076 DOI: 10.1155/2024/8224242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/05/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Stenotrophomonas maltophilia causes challenging infections in immunocompromised patients, exhibiting increasing resistance to multiple antimicrobials and possessing various virulence genes, including emerging resistance to trimethoprim-sulfamethoxazole. A total of 80 clinical isolates of S. maltophilia were collected from multiple hospitals in Tehran, Iran. This study conducted an analysis of antibiotic susceptibility by disc diffusion method and E-test assay, resistance and virulence gene frequencies were examined by PCR-sequencing, and multilocus sequencing typing (MLST) was performed for strain typing. Across the tested isolates, we observed notably high resistance rates for imipenem 80 (100%), meropenem 78(97.5%), and ceftazidime 72 (90%), while trimethoprim-sulfamethoxazole (SXT) showed a lower resistance rate of 2 (2.5%). Minocycline and levofloxacin demonstrated the highest susceptibility rates, with 70 (87.5%) and 80 (100%), respectively. The prevalence of antibiotic resistance genes bla L1, and bla L2 was 71 (88.75%) and 76 (95%), respectively. Additionally, the PCR analysis revealed that the frequency of virulence genes (fliC, virB, papD, pilU, hlyIII, stmPr1, and stmPr2) was 78 (97.5%), 77 (96.25%), 58 (72.5%), 77 (96.2%), 76 (95%), 31 (38.75%), and 80 (100%), respectively. Resistance to SXT isolate belong to the sequence type (ST15) and exhibits allelic profiles of (10, 29, 21, 21, 32, 32, and 10). The data obtained from our investigation have indicated that SXT remains an efficacious antibiotic and also highlighted the importance of effective management, identification of resistant isolates, and typing methods to address the global prevalence of antibiotic resistance in S. maltophilia.
Collapse
Affiliation(s)
- Mahrokh Bahrami
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of MicrobiologySchool of MedicineIran University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Khodaei
- Department of MicrobiologySchool of MedicineIran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Monsibais AN, Tea O, Ghatbale P, Phan J, Lam K, Paulson M, Tran N, Suder DS, Blanc AN, Samillano C, Suh J, Dunham S, Gonen S, Pride D, Whiteson K. Enhanced Suppression of Stenotrophomonas maltophilia by a Three-Phage Cocktail: Genomic Insights and Kinetic Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607921. [PMID: 39185190 PMCID: PMC11343209 DOI: 10.1101/2024.08.14.607921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In our era of rising antibiotic resistance, Stenotrophomonas maltophilia (STM) is an understudied, gram-negative, aerobic bacterium widespread in the environment and increasingly causing opportunistic infections. Treating STM infections remains difficult, leading to an increase in disease severity and higher hospitalization rates in people with Cystic Fibrosis (pwCF), cancer, and other immunocompromised health conditions. The lack of effective antibiotics has led to renewed interest in phage therapy; however, there is a need for well-characterized phages. In response to an oncology patient with a respiratory infection, we collected 18 phages from Southern California wastewater influent that exhibit different plaque morphology against STM host strain B28B, cultivated from a blood sample. Here, we characterize the genomes and life cycle kinetics of our STM phage collection. We hypothesize that genetically distinct phages give rise to unique lytic life cycles that can enhance bacterial killing when combined into a phage cocktail compared to the individual phages alone. We identified three genetically distinct clusters of phages, and a representative from each group was screened for potential therapeutic use and investigated for infection kinetics. The results demonstrated that the three-phage cocktail significantly suppressed bacterial growth compared to individual phages when observed for 48 hours. We also assessed the lytic impacts of our three-phage cocktail against a collection of 46 STM strains to determine if a multi-phage cocktail can expand the host range of individual phages. Our phages remained strain-specific and infect >50% of tested strains. The multi-phage cocktail maintains bacterial growth suppression and prevents the emergence of phage-resistant strains throughout our 40-hour assay. These findings suggest specialized phage cocktails may be an effective avenue of treatment for recalcitrant STM infections resistant to current antibiotics.
Collapse
Affiliation(s)
- Alisha N Monsibais
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Olivia Tea
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Pooja Ghatbale
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Jennifer Phan
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Karen Lam
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - McKenna Paulson
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Natalie Tran
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Diana S Suder
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Alisha N Blanc
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Cyril Samillano
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Joy Suh
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Sage Dunham
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Shane Gonen
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - David Pride
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Katrine Whiteson
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| |
Collapse
|
5
|
Casale R, Boattini M, Comini S, Bastos P, Corcione S, De Rosa FG, Bianco G, Costa C. Clinical and microbiological features of positive blood culture episodes caused by non-fermenting gram-negative bacilli other than Pseudomonas and Acinetobacter species (2020-2023). Infection 2024:10.1007/s15010-024-02342-6. [PMID: 38990473 DOI: 10.1007/s15010-024-02342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Non-fermenting Gram-negative bacilli (NFGNB) other than Pseudomonas aeruginosa and Acinetobacter baumannii complex are pathogens of interest due to their ability to cause health-care associated infections and display complex drug resistance phenotypes. However, their clinical and microbiological landscape is still poorly characterized. METHODS Observational retrospective study including all hospitalized patients presenting with a positive positive blood culture (BC) episode caused by less common NFGNB over a four-year period (January 2020-December 2023). Clinical-microbiological features and factors associated with mortality were investigated. RESULTS Sixty-six less common NFGNB isolates other than Pseudomonas and Acinetobacter species causing 63 positive BC episodes were recovered from 60 patients. Positive BC episodes were predominantly sustained by Stenotrophomonas maltophilia (49.2%) followed by Achromobacter species (15.9%) that exhibited the most complex resistance phenotype. Positive BC episodes had bloodstream infection criteria in 95.2% of cases (60 out 63), being intravascular device (30.2%) and respiratory tract (19.1%) the main sources of infection. Fourteen-day, 30-day, and in-hospital mortality rates were 6.4%, 9.5%, and 15.9%, respectively. The longer time from admission to the positive BC episode, older age, diabetes, admission due to sepsis, and higher Charlson Comorbidity Index were identified as the main predictors of in-hospital mortality. CONCLUSIONS Positive BC episodes sustained by NFGNB other than Pseudomonas and Acinetobacter species were predominantly sustained by Stenotrophomonas maltophilia and Achromobacter species, having bloodstream infection criteria in the vast majority of cases. Factors that have emerged to be associated with mortality highlighted how these species may have more room in prolonged hospitalisation and at the end of life for patients with chronic organ diseases.
Collapse
Affiliation(s)
- Roberto Casale
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy
| | - Matteo Boattini
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy.
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy.
- Lisbon Academic Medical Centre, Lisbon, Portugal.
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Jesi, 60035, Italy
| | - Paulo Bastos
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Toulouse, France
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, 10124, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, 10124, Italy
- Unit of Infectious Diseases, Cardinal Massaia Hospital, Asti, 14100, Italy
| | - Gabriele Bianco
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, Lecce, 73100, Italy
| | - Cristina Costa
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy
| |
Collapse
|
6
|
AlFonaisan MK, Mubaraki MA, Althawadi SI, Obeid DA, Al-Qahtani AA, Almaghrabi RS, Alhamlan FS. Temporal analysis of prevalence and antibiotic-resistance patterns in Stenotrophomonas maltophilia clinical isolates in a 19-year retrospective study. Sci Rep 2024; 14:14459. [PMID: 38914597 PMCID: PMC11196270 DOI: 10.1038/s41598-024-65509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
Stenotrophomonas maltophilia is a nonfermenting gram-negative bacterium associated with multiple nosocomial outbreaks. Antibiotic resistance increases healthcare costs, disease severity, and mortality. Multidrug-resistant infections (such as S. maltophilia infection) are difficult to treat with conventional antimicrobials. This study aimed to investigate the isolation rates, and resistance trends of S. maltophilia infections over the past 19 years, and provide future projections until 2030. In total, 4466 patients with S. maltophilia infection were identified. The adult and main surgical intensive care unit (ICU) had the highest numbers of patients (32.2%), followed by the cardiology department (29.8%), and the paediatric ICU (10%). The prevalence of S. maltophilia isolation increased from 7% [95% confidence interval (CI) 6.3-7.7%] in 2004-2007 to 15% [95% CI 10.7-19.9%] in 2020-2022. Most S. maltophilia isolates were resistant to ceftazidime (72.5%), levofloxacin (56%), and trimethoprim-sulfamethoxazole (14.05%), according to our study. A consistent and significant difference was found between S. maltophilia-positive ICU patients and non-ICU patients (P = 0.0017) during the three-year pandemic of COVID-19 (2019-2021). The prevalence of S. maltophilia isolates is expected to reach 15.08% [95% CI 12.58-17.59%] by 2030. Swift global action is needed to address this growing issue; healthcare authorities must set priorities and monitor infection escalations and treatment shortages.
Collapse
Affiliation(s)
- Meshal K AlFonaisan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, P.O.BOX 3354, 11211, Riyadh, Saudi Arabia
- Faculty Member, Majmaah University, Al Majmaah, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sahar I Althawadi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dalia A Obeid
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, P.O.BOX 3354, 11211, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Reem S Almaghrabi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fatimah S Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, P.O.BOX 3354, 11211, Riyadh, Saudi Arabia.
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Barrasa H, Morán MA, Fernández-Ciriza L, Isla A, Solinís MÁ, Canut-Blasco A, Rodríguez-Gascón A. Optimizing Antibiotic Therapy for Stenotrophomonas maltophilia Infections in Critically Ill Patients: A Pharmacokinetic/Pharmacodynamic Approach. Antibiotics (Basel) 2024; 13:553. [PMID: 38927219 PMCID: PMC11201243 DOI: 10.3390/antibiotics13060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic, multidrug-resistant non-fermentative Gram-negative bacillus, posing a significant challenge in clinical treatment due to its numerous intrinsic and acquired resistance mechanisms. This study aimed to evaluate the adequacy of antibiotics used for the treatment of S. maltophilia infections in critically ill patients using a pharmacokinetic/pharmacodynamic (PK/PD) approach. The antibiotics studied included cotrimoxazole, levofloxacin, minocycline, tigecycline, cefiderocol, and the new combination aztreonam/avibactam, which is not yet approved. By Monte Carlo simulations, the probability of target attainment (PTA), the PK/PD breakpoints, and the cumulative fraction of response (CFR) were estimated. PK parameters and MIC distributions were sourced from the literature, the European Committee on Antimicrobial Susceptibility Testing (EUCAST), and the SENTRY Antimicrobial Surveillance Program collection. Cefiderocol 2 g q8h, minocycline 200 mg q12h, tigecycline 100 mg q12h, and aztreonam/avibactam 1500/500 mg q6h were the best options to treat empirically infections due to S. maltophilia. Cotrimoxazole provided a higher probability of treatment success for the U.S. isolates than for European isolates. For all antibiotics, discrepancies between the PK/PD breakpoints and the clinical breakpoints defined by EUCAST (or the ECOFF) and CLSI were detected.
Collapse
Affiliation(s)
- Helena Barrasa
- Intensive Care Unit, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
| | - Miguel Angel Morán
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Infectious Disease Division, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Leire Fernández-Ciriza
- Microbiology Laboratory, Biomedical Diagnostic Service, Hospital San Pedro, 26006 Logroño, Spain;
| | - Arantxa Isla
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Andrés Canut-Blasco
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Microbiology Service, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Szulc J, Okrasa M, Nowak A, Ryngajłło M, Nizioł J, Kuźniar A, Ruman T, Gutarowska B. Uncontrolled Post-Industrial Landfill-Source of Metals, Potential Toxic Compounds, Dust, and Pathogens in Environment-A Case Study. Molecules 2024; 29:1496. [PMID: 38611776 PMCID: PMC11013361 DOI: 10.3390/molecules29071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this case study was the evaluation of the selected metals' concentration, potential toxic compound identification, cytotoxicity analysis, estimation of the airborne dust concentration, biodiversity, and number of microorganisms in the environment (leachate, soil, air) of the biggest uncontrolled post-industrial landfills in Poland. Based on the results obtained, preliminary solutions for the future management of post-industrial objects that have become an uncontrolled landfill were indicated. In the air, the PM1 fraction dominated, constituting 78.1-98.2% of the particulate matter. Bacterial counts were in the ranges of 9.33 × 101-3.21 × 103 CFU m-3 (air), 1.87 × 105-2.30 × 106 CFU mL-1 (leachates), and 8.33 × 104-2.69 × 106 CFU g-1 (soil). In the air, the predominant bacteria were Cellulosimicrobium and Stenotrophomonas. The predominant fungi were Mycosphaerella, Cladosporium, and Chalastospora. The main bacteria in the leachates and soils were Acinetobacter, Mortierella, Proteiniclasticum, Caloramator, and Shewanella. The main fungi in the leachates and soils were Lindtneria. Elevated concentrations of Pb, Zn, and Hg were detected. The soil showed the most pronounced cytotoxic potential, with rates of 36.55%, 63.08%, and 100% for the A-549, Caco-2, and A-549 cell lines. Nine compounds were identified which may be responsible for this cytotoxic effect, including 2,4,8-trimethylquinoline, benzo(f)quinoline, and 1-(m-tolyl)isoquinoline. The microbiome included bacteria and fungi potentially metabolizing toxic compounds and pathogenic species.
Collapse
Affiliation(s)
- Justyna Szulc
- Department of Environmental Biotechnology, Lodz University of Technology, 90-530 Łódź, Poland; (A.N.); (B.G.)
| | - Małgorzata Okrasa
- Department of Personal Protective Equipment, Central Institute for Labour Protection—National Research Institute, 90-133 Łódź, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, 90-530 Łódź, Poland; (A.N.); (B.G.)
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland;
| | - Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (J.N.); (A.K.); (T.R.)
| | - Anna Kuźniar
- Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (J.N.); (A.K.); (T.R.)
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (J.N.); (A.K.); (T.R.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, 90-530 Łódź, Poland; (A.N.); (B.G.)
| |
Collapse
|
9
|
Adefila WO, Osie I, Keita ML, Wutor BM, Yusuf AO, Hossain I, Molfa M, Barjo O, Salaudeen R, Mackenzie G. Stenotrophomonas maltophilia neonatal sepsis: a case report. J Med Case Rep 2024; 18:180. [PMID: 38523318 PMCID: PMC10962140 DOI: 10.1186/s13256-024-04479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is a gram-negative bacteria known for causing opportunistic and nosocomial infections in humans. S. maltophilia is an emerging pathogen of concern due to it's increasing prevalence, diverse disease spectrum, intrinsic multi-drug resistance and high mortality rates in immunocompromised individuals. S. maltophilia is a rare cause of neonatal sepsis associated with significant morbidity and mortality. The bacterium's multi-drug resistance poses a considerable challenge for treatment, with various mechanisms contributing to its resistance. CASE PRESENTATION We report a case involving a 40-h-old male African neonate who exhibited symptoms of neonatal sepsis. The blood culture revealed Stenotrophomonas maltophilia, which was sensitive to ciprofloxacin and gentamicin but resistant to other antibiotics. Lumbar puncture for CSF could not be done because the father declined. We treated the newborn with the empirical first-line antibiotics as per the national guideline intravenous ampicillin and gentamicin for six days, and the child recovered fully with a repeated negative blood culture. CONCLUSIONS This report describes a neonatal sepsis case caused by S. maltophilia, a multi-drug resistant bacteria and a rare cause of neonatal sepsis. We report that early detection of the bacterial and antimicrobial management based on local antibiogram data may be essential for successful patient's management.
Collapse
Affiliation(s)
- Williams Oluwatosin Adefila
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia.
| | - Isaac Osie
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Modou Lamin Keita
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
| | - Baleng Mahama Wutor
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
| | - Abdulsalam Olawale Yusuf
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
| | - Ilias Hossain
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
| | - Minteh Molfa
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
| | - Ousman Barjo
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
| | - Rasheed Salaudeen
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
| | - Grant Mackenzie
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, West Africa, PO Box 273, Fajara, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Bostanghadiri N, Sholeh M, Navidifar T, Dadgar-Zankbar L, Elahi Z, van Belkum A, Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2024; 23:26. [PMID: 38504262 PMCID: PMC10953290 DOI: 10.1186/s12941-024-00685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, BaseClear, Leiden, Netherlands
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Heydarnia E, Majidzadeh N, Seyedin B, Saber V. Commentary: Global prevalence and antibiotic resistance in clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1340358. [PMID: 38357653 PMCID: PMC10864536 DOI: 10.3389/fmed.2024.1340358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Behnaz Seyedin
- Department of Microbiology, Azad University, Shahr-e Qods, Tehran, Iran
| | - Vafa Saber
- Biochemistry and Biophysics Research Center, North Tehran Azad University, Tehran, Iran
| |
Collapse
|