1
|
Shah A, Decoste R, Vanderbeck K, Sharma A, Roy SF, Naert K, Osmond A. Molecular-Guided Therapy for Melanoma in Canada: Overview of Current Practices and Recommendations. J Cutan Med Surg 2024:12034754241303057. [PMID: 39661469 DOI: 10.1177/12034754241303057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The emergence of pathologist-driven molecular reflex testing for tumoural biomarkers is a significant advancement in cancer diagnostics, facilitating targeted cancer therapy for our patients. Based on our experience, the Canadian landscape of pathologist-driven reflex biomarker testing for melanoma lacks standardization and is plagued by a lack of awareness by pathologists and clinicians. This paper comprehensively examines the approaches to reflex biomarker testing for melanoma patients across Canada, highlighting the regional variations in the criteria for initiating molecular testing, the biomarkers tested, and the molecular techniques employed. We also discuss the clinical relevance of biomarkers, emphasizing their alignment with the National Comprehensive Cancer Network® (NCCN®) Clinical Practice Guidelines in Oncology (NCCN Guidelines®) as well as ancillary tests such as BRAF VE1 immunohistochemistry to detect BRAF V600E mutation and molecular techniques such as real-time polymerase chain reaction, matrix-assisted laser desorption ionization-time of flight mass spectrometry and next-generation sequencing. Our proposed standardized minimum criteria for reflex testing prioritize melanomas with Breslow thickness >4 mm or disseminated disease, who will most benefit from enhanced delivery of biomarkers and expedited access to targeted therapies while attempting to balance cost-effectiveness and utilization of public healthcare resources with patient outcomes.
Collapse
Affiliation(s)
- Ahmed Shah
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Precision Laboratories, Calgary, AB, Canada
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ryan Decoste
- Department of Pathology, Nova Scotia Health (Central Zone) and Dalhousie University, Halifax, NS, Canada
| | - Kaitlin Vanderbeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Anurag Sharma
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Simon F Roy
- Department of Dermatology, Yale University, New Haven, CT, USA
| | - Karen Naert
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Precision Laboratories, Calgary, AB, Canada
| | - Allison Osmond
- Department of Diagnostic and Molecular Pathology, Memorial University of Newfoundland, Health Sciences Centre, St. John's, NL, Canada
| |
Collapse
|
2
|
Ito T, Tanaka Y, Kaku-Ito Y, Tanegashima K, Imajima M, Ichiki T, Nakahara T. KS-cSCC-1 and KS-cSCC-2: two novel cutaneous squamous cell carcinoma cell lines established from Japanese patients. Front Med (Lausanne) 2024; 11:1483450. [PMID: 39582977 PMCID: PMC11583063 DOI: 10.3389/fmed.2024.1483450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer. Less accessibility to the cSCC cell lines has limited analyses of this disease. Thus, we here aimed to establish novel cSCC cell lines from patient's cSCC lesions. Methods Two novel cSCC cell lines (named KS-cSCC-1 and KS-cSCC-2) were established from an axillary lymph node metastasis of a Japanese female and an inguinal lymph node metastasis of a Japanese male. The characteristics of the established cell lines were assessed by in vitro analyses. Results The cells were successfully maintained for more than 9 months, with a doubling time of 47.5 ± 1.11 h (KS-cSCC-1) and 39.2 ± 5.78 h (KS-cSCC-2). The cell lines exhibited constant growth, spheroid formation, and invasiveness. Short tandem repeat analyses and immunohistochemistry confirmed that both cell lines are identical to their original tumor. The KS-cSCC-1 cells were weakly positive for CK14 and strongly positive for CK10, while the KS-cSCC-2 showed opposite expression patterns. Chemosensitivity of the cell lines was further tested and the cells were sensitive to anticancer drugs which are used to treat cSCC. Conclusion The KS-cSCC-1 and KS-cSCC-2 cell lines were promising resources for basic and preclinical research on cSCC to better define the tumor characteristics and treatment strategy of this cancer.
Collapse
Affiliation(s)
- Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Zalis M, Viana Veloso GG, Aguiar Jr. PN, Gimenes N, Reis MX, Matsas S, Ferreira CG. Next-generation sequencing impact on cancer care: applications, challenges, and future directions. Front Genet 2024; 15:1420190. [PMID: 39045325 PMCID: PMC11263191 DOI: 10.3389/fgene.2024.1420190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Fundamentally precision oncology illustrates the path in which molecular profiling of tumors can illuminate their biological behavior, diversity, and likely outcomes by identifying distinct genetic mutations, protein levels, and other biomarkers that underpin cancer progression. Next-generation sequencing became an indispensable diagnostic tool for diagnosis and treatment guidance in current clinical practice. Nowadays, tissue analysis benefits from further support through methods like comprehensive genomic profiling and liquid biopsies. However, precision medicine in the field of oncology presents specific hurdles, such as the cost-benefit balance and widespread accessibility, particularly in countries with low- and middle-income. A key issue is how to effectively extend next-generation sequencing to all cancer patients, thus empowering treatment decision-making. Concerns also extend to the quality and preservation of tissue samples, as well as the evaluation of health technologies. Moreover, as technology advances, novel next-generation sequencing assessments are being developed, including the study of Fragmentomics. Therefore, our objective was to delineate the primary uses of next-generation sequencing, discussing its' applications, limitations, and prospective paths forward in Oncology.
Collapse
Affiliation(s)
- Mariano Zalis
- Oncoclínicas&Co/MedSir, Rio de Janeiro, Brazil
- Medical School of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilson Gabriel Viana Veloso
- Oncoclínicas&Co/MedSir, Rio de Janeiro, Brazil
- Santa Casa de Misericórdia de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | | | - Silvio Matsas
- Centro de Estudos e Pesquisas de Hematologia e Oncologia (CEPHO), Sao Paulo, Brazil
| | | |
Collapse
|
4
|
Cazzato G, Ingravallo G, Ribatti D. Angiogenesis Still Plays a Crucial Role in Human Melanoma Progression. Cancers (Basel) 2024; 16:1794. [PMID: 38791873 PMCID: PMC11120419 DOI: 10.3390/cancers16101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Angiogenesis plays a pivotal role in tumor progression, particularly in melanoma, the deadliest form of skin cancer. This review synthesizes current knowledge on the intricate interplay between angiogenesis and tumor microenvironment (TME) in melanoma progression. Pro-angiogenic factors, including VEGF, PlGF, FGF-2, IL-8, Ang, TGF-β, PDGF, integrins, MMPs, and PAF, modulate angiogenesis and contribute to melanoma metastasis. Additionally, cells within the TME, such as cancer-associated fibroblasts, mast cells, and melanoma-associated macrophages, influence tumor angiogenesis and progression. Anti-angiogenic therapies, while showing promise, face challenges such as drug resistance and tumor-induced activation of alternative angiogenic pathways. Rational combinations of anti-angiogenic agents and immunotherapies are being explored to overcome resistance. Biomarker identification for treatment response remains crucial for personalized therapies. This review highlights the complexity of angiogenesis in melanoma and underscores the need for innovative therapeutic approaches tailored to the dynamic TME.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
5
|
Kaur K, Ai R, Perry AG, Riley B, Roberts EL, Montano EN, Han J, Roacho J, Lopez BG, Skelsey MK, Childs MV, Childs JN, Dobak J, Ibarra C, Jansen B, Clarke LE, Stone S, Whitaker JW. Skin Cancer Risk Is Increased by Somatic Mutations Detected Noninvasively in Healthy-Appearing Sun-Exposed Skin. J Invest Dermatol 2024:S0022-202X(24)00176-3. [PMID: 38513819 DOI: 10.1016/j.jid.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Skin cancer risk is increased by exposure to ultraviolet radiation (UVR). Because UVR exposure accumulates over time and lighter skin is more susceptible to UVR, age and skin tone are risk factors for skin cancer. However, measurements of somatic mutations in healthy-appearing skin have not been used to calculate skin cancer risk. In this study, we developed a noninvasive test that quantifies somatic mutations in healthy-appearing sun-exposed skin and applied it to a 1038-subject cohort. Somatic mutations were combined with other known skin cancer risk factors to train a model to calculate risk. The final model (DNA-Skin Cancer Assessment of Risk) was trained to predict personal history of skin cancer from age, family history, skin tone, and mutation count. The addition of mutation count significantly improved model performance (OR = 1.3, 95% confidence interval = 1.14-1.48; P = 5.3 × 10-6) and made a more significant contribution than skin tone. Calculations of skin cancer risk matched the known United States population prevalence, indicating that DNA-Skin Cancer Assessment of Risk was well-calibrated. In conclusion, somatic mutations in healthy-appearing sun-exposed skin increase skin cancer risk, and mutations capture risk information that is not accounted for by other risk factors. Clinical utility is supported by the noninvasive nature of skin sample collection through adhesive patches.
Collapse
Affiliation(s)
| | - Rizi Ai
- DermTech, San Diego, California, USA
| | | | - Bae Riley
- DermTech, San Diego, California, USA
| | | | | | | | | | | | - Maral K Skelsey
- Department of Dermatology, School of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Maria V Childs
- Department of Dermatology, Texas A&M University College of Medicine, Temple, Texas, USA
| | - James N Childs
- Department of Dermatology, Texas A&M University College of Medicine, Temple, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Furlan KC, Saeed-Vafa D, Mathew TM, Saller JJ, Tabbara SO, Boyle TA, Wenig BM, Hernandez-Prera JC. Utility of UV Signature Mutations in the Diagnostic Assessment of Metastatic Head and Neck Carcinomas of Unknown Primary. Head Neck Pathol 2024; 18:11. [PMID: 38393464 PMCID: PMC10891032 DOI: 10.1007/s12105-024-01620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Metastatic carcinoma of unknown primary origin to the head and neck lymph nodes (HNCUP) engenders unique diagnostic considerations. In many cases, the detection of a high-risk human papillomavirus (HR-HPV) unearths an occult oropharyngeal squamous cell carcinoma (SCC). In metastatic HR-HPV-independent carcinomas, other primary sites should be considered, including cutaneous malignancies that can mimic HR-HPV-associated SCC. In this context, ultraviolet (UV) signature mutations, defined as ≥ 60% C→T substitutions with ≥ 5% CC→TT substitutions at dipyrimidine sites, identified in tumors arising on sun exposed areas, are an attractive and underused tool in the setting of metastatic HNCUP. METHODS A retrospective review of institutional records focused on cases of HR-HPV negative HNCUP was conducted. All cases were subjected to next generation sequencing analysis to assess UV signature mutations. RESULTS We identified 14 HR-HPV negative metastatic HNCUP to either the cervical or parotid gland lymph nodes, of which, 11 (11/14, 79%) had UV signature mutations, including 4 (4/10, 40%) p16 positive cases. All UV signature mutation positive cases had at least one significant TP53 mutation and greater than 20 unique gene mutations. CONCLUSION The management of metastatic cutaneous carcinomas significantly differs from other HNCUP especially metastatic HR-HPV-associated SCC; therefore, the observation of a high percentage of C→T with CC →TT substitutions should be routinely incorporated in next generation sequencing reports of HNCUP. UV mutational signatures testing is a robust diagnostic tool that can be utilized in daily clinical practice.
Collapse
Affiliation(s)
- Karina Colossi Furlan
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Daryoush Saeed-Vafa
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Tiffani M Mathew
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - James J Saller
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Sana O Tabbara
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Theresa A Boyle
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Bruce M Wenig
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Juan C Hernandez-Prera
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|