1
|
Zhang N, Zhai L, Wong RMY, Cui C, Law SW, Chow SKH, Goodman SB, Cheung WH. Harnessing immunomodulation to combat sarcopenia: current insights and possible approaches. Immun Ageing 2024; 21:55. [PMID: 39103919 DOI: 10.1186/s12979-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sarcopenia is a complex age-associated syndrome of progressive loss of muscle mass and strength. Although this condition is influenced by many factors, age-related changes in immune function including immune cell dynamics, and chronic inflammation contribute to its progression. The complex interplay between the immune system, gut-muscle axis, and autophagy further underscores their important roles in sarcopenia pathogenesis. Immunomodulation has emerged as a promising strategy to counteract sarcopenia. Traditional management approaches to treat sarcopenia including physical exercise and nutritional supplementation, and the emerging technologies of biophysical stimulation demonstrated the importance of immunomodulation and regulation of macrophages and T cells and reduction of chronic inflammation. Treatments to alleviate low-grade inflammation in older adults by modulating gut microbial composition and diversity further combat sarcopenia. Furthermore, some pharmacological interventions, nano-medicine, and cell therapies targeting muscle, gut microbiota, or autophagy present additional avenues for immunomodulation in sarcopenia. This narrative review explores the immunological underpinnings of sarcopenia, elucidating the relationship between the immune system and muscle during ageing. Additionally, the review discusses new areas such as the gut-muscle axis and autophagy, which bridge immune system function and muscle health. Insights into current and potential approaches for sarcopenia management through modulation of the immune system are provided, along with suggestions for future research directions and therapeutic strategies. We aim to guide further investigation into clinical immunological biomarkers and identify indicators for sarcopenia diagnosis and potential treatment targets to combat this condition. We also aim to draw attention to the importance of considering immunomodulation in the clinical management of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liting Zhai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Shen L, Zong Y, Zhao J, Yang Y, Li L, Li N, Gao Y, Xie X, Bao Q, Jiang L, Hu W. Characterizing the skeletal muscle immune microenvironment for sarcopenia: insights from transcriptome analysis and histological validation. Front Immunol 2024; 15:1414387. [PMID: 39026669 PMCID: PMC11254692 DOI: 10.3389/fimmu.2024.1414387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Sarcopenia is a condition characterized by the age-related loss of skeletal muscle mass and function. The pathogenesis of the disease is influenced by chronic low-grade inflammation. However, the specific changes in the immune landscape changes of sarcopenic muscle are not yet fully understood. Methods To gain insights into the immune cell composition and interactions, we combined single-nucleus RNA sequencing data, bulk RNA sequencing dataset, and comprehensive bioinformatic analyses on the skeletal muscle samples from young, aged, and sarcopenic individuals. Histological staining was then performed on skeletal muscles to validate the distribution of immune cells in clinical samples. Results We analyzed the transcriptomes of 101,862 single nuclei, revealing a total of 10 major cell types and 6 subclusters of immune cell types within the human skeletal muscle tissues. Notable variations were identified in the immune microenvironment between young and aged skeletal muscle. Among the immune cells from skeletal muscle microenvironment, macrophages constituted the largest fraction. A specific marker gene LYVE1 for skeletal muscle resident macrophages was further identified. Cellular subclasses included four distinct groups of resident macrophages, which play different roles in physiological or non-physiological conditions. Utilizing bulk RNA sequencing data, we observed a significant enrichment of macrophage-rich inflammation in sarcopenia. Conclusions Our findings demonstrate age-related changes in the composition and cross-talk of immune cells in human skeletal muscle microenvironment, which contribute to chronic inflammation in aged or sarcopenia muscle. Furthermore, macrophages emerge as a potential therapeutic target, thus advancing our understanding of the pathogenesis of sarcopenia.
Collapse
Affiliation(s)
- Linhui Shen
- Department of Geriatrics, Ruijin hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianfei Xie
- Hainan Branch, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Qionghai, China
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyuan Bao
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Weiguo Hu
- Department of Geriatrics, Ruijin hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Su Q, Shen J. Predictive role of preoperative sarcopenia for long-term survival in rectal cancer patients: A meta-analysis. PLoS One 2024; 19:e0303494. [PMID: 38771764 PMCID: PMC11108127 DOI: 10.1371/journal.pone.0303494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To identify the predictive role of sarcopenia in long-term survival among rectal cancer patients who underwent surgery based on available evidence. METHODS The Medline, EMBASE and Web of Science databases were searched up to October 20, 2023, for relevant studies. Overall survival (OS), disease-free survival (DFS) and cancer-specific survival (CSS) were the endpoints. Hazard ratios (HRs) and 95% confidence intervals (CIs) were combined to evaluate the association between sarcopenia and survival. RESULTS Fifteen studies with 4283 patients were included. The pooled results demonstrated that preoperative sarcopenia significantly predicted poorer OS (HR = 2.07, 95% CI = 1.67-2.57, P<0.001), DFS (HR = 1.85, 95% CI = 1.39-2.48, P<0.001) and CSS (HR = 1.83, 95% CI = 1.31-2.56, P<0.001). Furthermore, subgroup analysis based on neoadjuvant therapy indicated that sarcopenia was a risk factor for worse OS and DFS in patients who received (OS: HR = 2.44, P<0.001; DFS: HR = 2.16, P<0.001) but not in those who did not receive (OS: HR = 2.44, P<0.001; DDFS: HR = 1.86, P = 0.002) neoadjuvant chemoradiotherapy. In addition, subgroup analysis based on sample size and ethnicity showed similar results. CONCLUSION Preoperative sarcopenia is significantly related to poor survival in surgical rectal cancer patients and could serve as a novel and valuable predictor of long-term prognosis in these patients.
Collapse
Affiliation(s)
- Qiutong Su
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Jia Shen
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Callegari S, Mirzaei F, Agbaria L, Shariff S, Kantawala B, Moronge D, Ogendi BMO. Zebrafish as an Emerging Model for Sarcopenia: Considerations, Current Insights, and Future Directions. Int J Mol Sci 2023; 24:17018. [PMID: 38069340 PMCID: PMC10707505 DOI: 10.3390/ijms242317018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Sarcopenia poses a significant challenge to public health and can severely impact the quality of life of aging populations. Despite extensive efforts to study muscle degeneration using traditional animal models, there is still a lack of effective diagnostic tools, precise biomarkers, and treatments for sarcopenia. Zebrafish models have emerged as powerful tools in biomedical research, providing unique insights into age-related muscle disorders like sarcopenia. The advantages of using zebrafish models include their rapid growth outside of the embryo, optical transparency during early developmental stages, high reproductive potential, ease of husbandry, compact size, and genetic tractability. By deepening our understanding of the molecular processes underlying sarcopenia, we may develop novel diagnostic tools and effective treatments that can improve the lives of aging individuals affected by this condition. This review aims to explore the unique advantages of zebrafish as a model for sarcopenia research, highlight recent breakthroughs, outline potential avenues for future investigations, and emphasize the distinctive contributions that zebrafish models offer. Our research endeavors to contribute significantly to address the urgent need for practical solutions to reduce the impact of sarcopenia on aging populations, ultimately striving to enhance the quality of life for individuals affected by this condition.
Collapse
Affiliation(s)
- Santiago Callegari
- Vascular Medicine Outcomes Laboratory, Cardiology Department, Yale University, New Haven, CT 06510, USA
| | - Foad Mirzaei
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Lila Agbaria
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Sanobar Shariff
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Burhan Kantawala
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Desmond Moronge
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA;
| | - Brian M. O. Ogendi
- Department of Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA;
| |
Collapse
|