1
|
Sani MA, Rajput S, Keizer DW, Separovic F. NMR techniques for investigating antimicrobial peptides in model membranes and bacterial cells. Methods 2024; 224:10-20. [PMID: 38295893 DOI: 10.1016/j.ymeth.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Sunnia Rajput
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David W Keizer
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia; School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Kenyaga JM, Oteino SA, Sun Y, Qiang W. In-cell 31P solid-state NMR measurements of the lipid dynamics and influence of exogeneous β-amyloid peptides on live neuroblastoma neuro-2a cells. Biophys Chem 2023; 297:107008. [PMID: 36989875 DOI: 10.1016/j.bpc.2023.107008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Non-specific disruption of cellular membranes induced by aggregation of exogeneous β-amyloid (Aβ) peptides is considered a viable pathological mechanism in Alzheimer's disease (AD). The solid-state nuclear magnetic resonance (ssNMR) spectroscopy has been widely applied in model liposomes to provide important insights on the molecular interactions between membranes and Aβ aggregates. Yet, the feasibility of in-cell ssNMR spectroscopy to probe Aβ-membrane interactions in native cellular environments has rarely been tested. Here we report the application of in-cell31P ssNMR spectroscopy on live mouse neuroblastoma Neuro-2a (N2a) cells under moderate magic angle spinning (MAS) conditions. Both cell viability and cytoplasmic membrane integrity are retained for up to six hours under 5 kHz MAS frequency at 277 K, which allow applications of direct-polarization 31P spectroscopy and 31P spin-spin (T2) relaxation measurements. The 31P T2 relaxation time constant of N2a cells is significantly increased compared with the model liposome prepared with comparable major phospholipid compositions. With the addition of 5 μM 40-residue Aβ (Aβ1-40) peptides, the 31P T2 relaxation is instantly accelerated. This work demonstrates the feasibility of using in-cell31P ssNMR to investigate the Aβ-membrane interactions in the biologically relevant cellular system.
Collapse
|
3
|
Safeer A, Kleijburg F, Bahri S, Beriashvili D, Veldhuizen EJA, van Neer J, Tegelaar M, de Cock H, Wösten HAB, Baldus M. Probing Cell-Surface Interactions in Fungal Cell Walls by High-Resolution 1 H-Detected Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202202616. [PMID: 36181715 PMCID: PMC10099940 DOI: 10.1002/chem.202202616] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.
Collapse
Affiliation(s)
- Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Fleur Kleijburg
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Edwin J A Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (The, Netherlands
| | - Jacq van Neer
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Martin Tegelaar
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| |
Collapse
|
4
|
Kumari S, Booth V. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Int J Mol Sci 2022; 23:ijms23052740. [PMID: 35269882 PMCID: PMC8910884 DOI: 10.3390/ijms23052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Much of the work probing antimicrobial peptide (AMP) mechanisms has focussed on how these molecules permeabilize lipid bilayers. However, AMPs must also traverse a variety of non-lipid cell envelope components before they reach the lipid bilayer. Additionally, there is a growing list of AMPs with non-lipid targets inside the cell. It is thus useful to extend the biophysical methods that have been traditionally applied to study AMP mechanisms in liposomes to the full bacteria, where the lipids are present along with the full complexity of the rest of the bacterium. This review focusses on what can be learned about AMP mechanisms from solid-state NMR of AMP-treated intact bacteria. It also touches on flow cytometry as a complementary method for measuring permeabilization of bacterial lipid membranes in whole bacteria.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Correspondence: ; Tel.: +1-709-864-4523
| |
Collapse
|
5
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
Garratt RC. Protein structure, dynamics, and function-a 20th IUPAB Congress symposium. Biophys Rev 2021; 13:867-869. [PMID: 35059010 PMCID: PMC8724499 DOI: 10.1007/s12551-021-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022] Open
Abstract
A wide range of topics was raised by the four invited speakers who took part in the session on protein structure, dynamics, and function during the 20th IUPAB Congress. Most of the emphasis was placed on understanding the underlying biological phenomena of interest although applications in drug development were also mentioned. For both these purposes, it was clear that a complete description of the dynamics of the system was as important as the structures themselves. The subjects covered included antibiotic peptides, sodium channels, the synthesis of the bacterial cell wall, and protein dynamics using X-FELs.
Collapse
Affiliation(s)
- Richard C. Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
7
|
Rajput S, Sani MA, Keizer DW, Separovic F. Utilizing magnetic resonance techniques to study membrane interactions of amyloid peptides. Biochem Soc Trans 2021; 49:1457-1465. [PMID: 34156433 PMCID: PMC8286822 DOI: 10.1042/bst20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative condition that involves the extracellular accumulation of amyloid plaques predominantly consisting of Aβ peptide aggregates. The amyloid plaques and soluble oligomeric species of Aβ are believed to be the major cause of synaptic dysfunction in AD brain and their cytotoxic mechanisms have been proposed to involve interactions with cell membranes. In this review, we discuss our solid-state nuclear magnetic resonance (ssNMR) studies of Aβ interactions with model membranes.
Collapse
Affiliation(s)
- Sunnia Rajput
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marc-Antoine Sani
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David W. Keizer
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
8
|
Luu T, Li W, O'Brien‐Simpson NM, Hong Y. Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies. Chem Asian J 2021; 16:1027-1040. [DOI: 10.1002/asia.202100102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Tracey Luu
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Wenyi Li
- Bio21 Institute University of Melbourne Centre for Oral Health Research Melbourne Dental School Melbourne VIC 3010 Australia
| | - Neil M. O'Brien‐Simpson
- Bio21 Institute University of Melbourne Centre for Oral Health Research Melbourne Dental School Melbourne VIC 3010 Australia
| | - Yuning Hong
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|