1
|
Norouzi S, Daneshyar M, Farhoomand P, Tukmechi A, Tellez-Isaiasc G. In vitro evaluation of probiotic properties and selenium bioaccumulation of lactic acid bacteria isolated from poultry gastrointestinal, as an organic selenium source. Res Vet Sci 2023; 162:104934. [PMID: 37421824 DOI: 10.1016/j.rvsc.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The purpose of this study was to examine the probiotic characteristics and selenium (Se) bioaccumulation potential of five Lactobacillus strains in vitro. Lactobacillus acidophilus, L. delbrueckii subsp. lactis, L. reuteri, L. gallinarum, and L. animalis were among the strains employed. As significant aspects of probiotics, identification, and evaluation of their survival potential in the gastrointestinal system were undertaken. Although all experimental Lactobacillus strains bioaccumulated Se (IV) concentrations in media culture, three Lactobacillus strains (L. animalis, L. gallinarum, and L. acidophilus) bioaccumulated the highest Se concentrations (23.08, 8.62, and 8.51 mg/g, respectively) after culture in the presence of 1.5 mg/ml sodium selenite. By disc diffusion, all isolates were evaluated for antibiotic susceptibility against six antibiotics, including ciprofloxacin, ampicillin, methicillin, streptomycin, tetracycline, and trimethoprim-sulfamethoxazole. Many of the isolates tested positive for resistance to some of the antibiotics utilized. The L. reuteri and L. gallinarum were found to be resistant to about 50% of the antibiotics that were tested. In terms of acid tolerance, L. animalis showed significant resistance at acidic pH by 1.72 log unit reduction whereas L. delbrueckii and L. galliinarum showed significant sensitivity at acidic pH (P > 0.05). Bile tolerance was addressed as an important aspect of the safety assessment for probiotics. There were variances in acid and bile tolerance among species, although all of them tolerated stress conditions to an acceptable degree. Upon comparing the various species, it was observed that L. gallinarum exhibited a significant decline in growth, as evidenced by a decrease of 1.39 log units in cell viability. On the other hand, L. acidophilus and L. animalis demonstrated remarkable bile tolerance, with 0.09 and 0.23 log unit reduction respectively (P < 0.05). These results suggest that L. animalis, L. gallinarum, and L. acidophilus, can be good candidates to evaluate them in vivo in further investigations due to their tolerance to acid, and bile, antibiotic resistance, and strong ability to bioaccumulate Se in chickens.
Collapse
Affiliation(s)
- Shokoufeh Norouzi
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Mohsen Daneshyar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran.
| | - Parviz Farhoomand
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Amir Tukmechi
- Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| | | |
Collapse
|
2
|
Transforming traditional nutrition paradigms with synthetic biology driven microbial production platforms. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
3
|
De Vero L, Boniotti MB, Budroni M, Buzzini P, Cassanelli S, Comunian R, Gullo M, Logrieco AF, Mannazzu I, Musumeci R, Perugini I, Perrone G, Pulvirenti A, Romano P, Turchetti B, Varese GC. Preservation, Characterization and Exploitation of Microbial Biodiversity: The Perspective of the Italian Network of Culture Collections. Microorganisms 2019; 7:microorganisms7120685. [PMID: 31842279 PMCID: PMC6956255 DOI: 10.3390/microorganisms7120685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Microorganisms represent most of the biodiversity of living organisms in every ecological habitat. They have profound effects on the functioning of any ecosystem, and therefore on the health of our planet and of human beings. Moreover, microorganisms are the main protagonists in food, medical and biotech industries, and have several environmental applications. Accordingly, the characterization and preservation of microbial biodiversity are essential not only for the maintenance of natural ecosystems but also for research purposes and biotechnological exploitation. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are crucial for the safeguarding and circulation of biological resources, as well as for the progress of life sciences. This review deals with the expertise and services of CCs, in particular concerning preservation and characterization of microbial resources, by pointing to the advanced approaches applied to investigate a huge reservoir of microorganisms. Data sharing and web services as well as the tight interconnection between CCs and the biotechnological industry are highlighted. In addition, guidelines and regulations related to quality management systems (QMSs), biosafety and biosecurity issues are discussed according to the perspectives of CCs and mBRCs.
Collapse
Affiliation(s)
- Luciana De Vero
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
- Correspondence: ; Tel.: +39-0522-522-057
| | - Maria Beatrice Boniotti
- Biobank of Veterinary Resources, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, via Bianchi 9, 25124 Brescia, Italy;
| | - Marilena Budroni
- Department of Agricultural Science, University of Sassari, viale Italia 39, 07100 Sassari, Italy; (M.B.); (I.M.)
| | - Pietro Buzzini
- Department of Agriculture, Food and Environmental Science, University of Perugia, borgo XX Giugno, 74, I-06121 Perugia, Italy; (P.B.); (B.T.)
| | - Stefano Cassanelli
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
| | - Roberta Comunian
- Agris Sardegna, Agenzia regionale per la ricerca in agricoltura, Loc. Bonassai, km 18.600 SS291, 07100 Sassari, Italy;
| | - Maria Gullo
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy; (A.F.L.); (G.P.)
| | - Ilaria Mannazzu
- Department of Agricultural Science, University of Sassari, viale Italia 39, 07100 Sassari, Italy; (M.B.); (I.M.)
| | - Rosario Musumeci
- MicroMiB Culture Collection, Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy;
| | - Iolanda Perugini
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Torino, Italy; (I.P.); (G.C.V.)
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy; (A.F.L.); (G.P.)
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
| | - Paolo Romano
- Mass Spectrometry and Proteomics, Scientific Direction, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Benedetta Turchetti
- Department of Agriculture, Food and Environmental Science, University of Perugia, borgo XX Giugno, 74, I-06121 Perugia, Italy; (P.B.); (B.T.)
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Torino, Italy; (I.P.); (G.C.V.)
| |
Collapse
|
4
|
Quintieri L, Giribaldi M, Giuffrida MG, Creanza TM, Ancona N, Cavallarin L, De Angelis M, Caputo L. Proteome Response of Staphylococcus xylosus DSM 20266T to Anaerobiosis and Nitrite Exposure. Front Microbiol 2018; 9:2275. [PMID: 30319582 PMCID: PMC6167427 DOI: 10.3389/fmicb.2018.02275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023] Open
Abstract
The viability and competitiveness of Staphylococcus xylosus in meat mostly depend on the ability to adapt itself to rapid oxygen and nutrients depletion during meat fermentation. The utilization of nitrite instead of oxygen becomes a successful strategy for this strain to improve its performance in anaerobiosis; however, metabolic pathways of this strain underlying this adaptation, are partially known. The aim of this study was to provide an overview on proteomic changes of S. xylosus DSM 20266T cultured under anaerobiosis and nitrite exposure. Thus, two different cultures of this strain, supplemented or not with nitrite, were in vitro incubated in aerobiosis and anaerobiosis monitoring cell viability, pH, oxidation reduction potential and nitrite content. Protein extracts, obtained from cells, collected as nitrite content was depleted, were analyzed by 2DE/MALDI-TOF/TOF-MS. Results showed that DSM 20266T growth was significantly sustained by nitrite in anaerobiosis, whereas no differences were found in aerobiosis. Accordingly, nitrite content was depleted after 13 h only in anaerobiosis. At this time of sampling, a comparative proteomic analysis showed 45 differentially expressed proteins. Most differences were found between aerobic and anaerobic cultures without nitrite; the induction of glycolytic enzymes and glyoxylate cycle, the reduction of TCA enzymes, and acetate fermentation were found in anaerobiosis to produce ATP and maintain the cell redox balance. In anaerobic cultures the nitrite supplementation partially restored TCA cycle, and reduced the amount of glycolytic enzymes. These results were confirmed by phenotypic microarray that, for the first time, was carried out on cell previously adapted at the different growth conditions. Overall, metabolic changes were similar between aerobiosis and anaerobiosis NO2-adapted cells, whilst cells grown under anaerobiosis showed different assimilation profiles by confirming proteomic data; indeed, these latter extensively assimilated substrates addressed at both supplying glucose for glycolysis or fueling alternative pathways to TCA cycle. In conclusion, metabolic pathways underlying the ability of S. xylosus to adapt itself to oxygen starvation were revealed; the addition of nitrite allowed S. xylosus to take advantage of nitrite to this condition, restoring some metabolic pathway underlying aerobic behavior of the strain.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Marzia Giribaldi
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy.,Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca in Ingegneria e Trasformazioni Agroalimentari, Turin, Italy
| | | | - Teresa Maria Creanza
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Nicola Ancona
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
5
|
Suharja AA, Henriksson A, Liu SQ. Impact ofSaccharomyces Cerevisiaeon Viability of ProbioticLactobacillus Rhamnosusin Fermented Milk under Ambient Conditions. J FOOD PROCESS PRES 2012. [DOI: 10.1111/j.1745-4549.2012.00780.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anggita A.S. Suharja
- Food Science and Technology Programme; Department of Chemistry; 4 Science Drive 4; National University of Singapore; Singapore 117543
| | | | - Shao-Quan Liu
- Food Science and Technology Programme; Department of Chemistry; 4 Science Drive 4; National University of Singapore; Singapore 117543
| |
Collapse
|
6
|
Capozzi V, Russo P, Fragasso M, De Vita P, Fiocco D, Spano G. Biotechnology and pasta-making: lactic Acid bacteria as a new driver of innovation. Front Microbiol 2012; 3:94. [PMID: 22457660 PMCID: PMC3304088 DOI: 10.3389/fmicb.2012.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/26/2012] [Indexed: 01/12/2023] Open
Abstract
Cereals-derived foods represent a key constituent in the diet of many populations. In particular, pasta is consumed in large quantities throughout the world in reason of its nutritive importance, containing significant amounts of complex carbohydrates, proteins, B-vitamins, and iron. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria that play a key role in the production of fermented foods and beverages with high relevance for human and animal health. A wide literature testifies the multifaceted importance of LAB biotechnological applications in cereal-based products. Several studies focused on LAB isolation and characterization in durum wheat environment, in some cases with preliminary experimental applications of LAB in pasta-making. In this paper, using sourdough as a model, we focus on the relevant state-of-art to introduce a LAB-based biotechnological step in industrial pasta-making, a potential world driver of innovation that might represent a cutting-edge advancement in pasta production.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Molecular Microbiology, Department of Food Science, Foggia University Foggia, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Bouchard C, Ordovas JM. Fundamentals of Nutrigenetics and Nutrigenomics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:1-15. [DOI: 10.1016/b978-0-12-398397-8.00001-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Capozzi V, Spano G. Food microbial biodiversity and "microbes of protected origin". Front Microbiol 2011; 2:237. [PMID: 22144978 PMCID: PMC3226094 DOI: 10.3389/fmicb.2011.00237] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/10/2011] [Indexed: 12/31/2022] Open
|
9
|
Suzzi G. From wild strain to domesticated strain: the philosophy of microbial diversity in foods. Front Microbiol 2011; 2:169. [PMID: 21887153 PMCID: PMC3157009 DOI: 10.3389/fmicb.2011.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/26/2011] [Indexed: 11/16/2022] Open
Affiliation(s)
- Giovanna Suzzi
- Food Science Department, University of Teramo Teramo, Italy
| |
Collapse
|