1
|
D'Ermo G, Audebert S, Camoin L, Planer-Friedrich B, Casiot-Marouani C, Delpoux S, Lebrun R, Guiral M, Schoepp-Cothenet B. Quantitative proteomics reveals the Sox system's role in sulphur and arsenic metabolism of phototroph Halorhodospira halophila. Environ Microbiol 2024; 26:e16655. [PMID: 38897608 DOI: 10.1111/1462-2920.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds. This analysis allowed us to reconstruct the first comprehensive sulphur-oxidative photosynthetic network for this family. Some members of the Ectothiorhodospiraceae family have been shown to use arsenite as a photosynthetic electron donor. Therefore, we analysed the proteome response of Halorhodospira halophila when grown under arsenite and sulphide conditions. Our analyses using ion chromatography-inductively coupled plasma mass spectrometry showed that thioarsenates are chemically formed under these conditions. However, they are more extensively generated and converted in the presence of bacteria, suggesting a biological process. Our quantitative proteomics revealed that the SoxAXYZB system, typically dedicated to thiosulphate oxidation, is overproduced under these growth conditions. Additionally, two electron carriers, cytochrome c551/c5 and HiPIP III, are also overproduced. Electron paramagnetic resonance spectroscopy suggested that these transporters participate in the reduction of the photosynthetic Reaction Centre. These results support the idea of a chemically and biologically formed thioarsenate being oxidized by the Sox system, with cytochrome c551/c5 and HiPIP III directing electrons towards the Reaction Centre.
Collapse
Affiliation(s)
- Giulia D'Ermo
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Centre for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | | | - Sophie Delpoux
- Laboratoire HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Régine Lebrun
- Aix-Marseille Université, CNRS, IMM-FR3479, Marseille Protéomique, Marseille, France
| | - Marianne Guiral
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | | |
Collapse
|
2
|
Wang T, Li X, Liu H, Liu H, Xia Y, Xun L. Microorganisms uptake zero-valent sulfur via membrane lipid dissolution of octasulfur and intracellular solubilization as persulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170504. [PMID: 38307292 DOI: 10.1016/j.scitotenv.2024.170504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Zero-valent sulfur, commonly utilized as a fertilizer or fungicide, is prevalent in various environmental contexts. Its most stable and predominant form, octasulfur (S8), plays a crucial role in microbial sulfur metabolism, either through oxidation or reduction. However, the mechanism underlying its cellular uptake remains elusive. We presented evidence that zero-valent sulfur was adsorbed to the cell surface and then dissolved into the membrane lipid layer as lipid-soluble S8 molecules, which reacted with cellular low-molecular thiols to form persulfide, e.g., glutathione persulfide (GSSH), in the cytoplasm. The process brought extracellular zero-valent sulfur into the cells. When persulfide dioxygenase is present in the cells, GSSH will be oxidized. Otherwise, GSSH will react with another glutathione (GSH) to produce glutathione disulfide (GSSG) and hydrogen sulfide (H2S). The mechanism is different from simple diffusion, as insoluble S8 becomes soluble GSSH after crossing the cytoplasmic membrane. The uptake process is limited by physical contact of insoluble zero-valent sulfur with microbial cells and the regeneration of cellular thiols. Our findings elucidate the cellular uptake mechanism of zero-valent sulfur, which provides critical information for its application in agricultural practices and the bioremediation of sulfur contaminants and heavy metals.
Collapse
Affiliation(s)
- Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
3
|
Kanao T. Tetrathionate hydrolase from the acidophilic microorganisms. Front Microbiol 2024; 15:1338669. [PMID: 38348185 PMCID: PMC10859504 DOI: 10.3389/fmicb.2024.1338669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Tetrathionate hydrolase (TTH) is a unique enzyme found in acidophilic sulfur-oxidizing microorganisms, such as bacteria and archaea. This enzyme catalyzes the hydrolysis of tetrathionate to thiosulfate, elemental sulfur, and sulfate. It is also involved in dissimilatory sulfur oxidation metabolism, the S4-intermediate pathway. TTHs have been purified and characterized from acidophilic autotrophic sulfur-oxidizing microorganisms. All purified TTHs show an optimum pH in the acidic range, suggesting that they are localized in the periplasmic space or outer membrane. In particular, the gene encoding TTH from Acidithiobacillus ferrooxidans (Af-tth) was identified and recombinantly expressed in Escherichia coli cells. TTH activity could be recovered from the recombinant inclusion bodies by acid refolding treatment for crystallization. The mechanism of tetrathionate hydrolysis was then elucidated by X-ray crystal structure analysis. Af-tth is highly expressed in tetrathionate-grown cells but not in iron-grown cells. These unique structural properties, reaction mechanisms, gene expression, and regulatory mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Agricultural and Biological Chemistry, Graduate School of Environment, Life, Natural Science, and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Wu P, Yuan Q, Cheng T, Han Y, Zhao W, Liao X, Wang L, Cai J, He Q, Guo Y, Zhang X, Lu F, Wang J, Ma H, Huang Z. Genome sequencing and metabolic network reconstruction of a novel sulfur-oxidizing bacterium Acidithiobacillus Ameehan. Front Microbiol 2023; 14:1277847. [PMID: 38053556 PMCID: PMC10694236 DOI: 10.3389/fmicb.2023.1277847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Sulfur-oxidizing bacteria play a crucial role in various processes, including mine bioleaching, biodesulfurization, and treatment of sulfur-containing wastewater. Nevertheless, the pathway involved in sulfur oxidation is highly intricate, making it complete comprehension a formidable and protracted undertaking. The mechanisms of sulfur oxidation within the Acidithiobacillus genus, along with the process of energy production, remain areas that necessitate further research and elucidation. In this study, a novel strain of sulfur-oxidizing bacterium, Acidithiobacillus Ameehan, was isolated. Several physiological characteristics of the strain Ameehan were verified and its complete genome sequence was presented in the study. Besides, the first genome-scale metabolic network model (AMEE_WP1377) was reconstructed for Acidithiobacillus Ameehan to gain a comprehensive understanding of the metabolic capacity of the strain.The characteristics of Acidithiobacillus Ameehan included morphological size and an optimal growth temperature range of 37-45°C, as well as an optimal growth pH range of pH 2.0-8.0. The microbe was found to be capable of growth when sulfur and K2O6S4 were supplied as the energy source and electron donor for CO2 fixation. Conversely, it could not utilize Na2S2O3, FeS2, and FeSO4·7H2O as the energy source or electron donor for CO2 fixation, nor could it grow using glucose or yeast extract as a carbon source. Genome annotation revealed that the strain Ameehan possessed a series of sulfur oxidizing genes that enabled it to oxidize elemental sulfur or various reduced inorganic sulfur compounds (RISCs). In addition, the bacterium also possessed carbon fixing genes involved in the incomplete Calvin-Benson-Bassham (CBB) cycle. However, the bacterium lacked the ability to oxidize iron and fix nitrogen. By implementing a constraint-based flux analysis to predict cellular growth in the presence of 71 carbon sources, 88.7% agreement with experimental Biolog data was observed. Five sulfur oxidation pathways were discovered through model simulations. The optimal sulfur oxidation pathway had the highest ATP production rate of 14.81 mmol/gDW/h, NADH/NADPH production rate of 5.76 mmol/gDW/h, consumed 1.575 mmol/gDW/h of CO2, and 1.5 mmol/gDW/h of sulfur. Our findings provide a comprehensive outlook on the most effective cellular metabolic pathways implicated in sulfur oxidation within Acidithiobacillus Ameehan. It suggests that the OMP (outer-membrane proteins) and SQR enzymes (sulfide: quinone oxidoreductase) have a significant impact on the energy production efficiency of sulfur oxidation, which could have potential biotechnological applications.
Collapse
Affiliation(s)
- Peng Wu
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qianqian Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tingting Cheng
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yifan Han
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wei Zhao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoping Liao
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lu Wang
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jingyi Cai
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian He
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ying Guo
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Fuping Lu
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjing Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Hongwu Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Huang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
5
|
Gao Y, Zhu H, Wang J, Shao Z, Wei S, Wang R, Cheng R, Jiang L. Physiological and Genomic Characterization of a Novel Obligately Chemolithoautotrophic, Sulfur-Oxidizing Bacterium of Genus Thiomicrorhabdus Isolated from a Coastal Sediment. Microorganisms 2023; 11:2569. [PMID: 37894227 PMCID: PMC10608990 DOI: 10.3390/microorganisms11102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Thiomicrorhabdus species, belonging to the family Piscirickettsiaceae in the phylum Pseudomonadotav are usually detected in various sulfur-rich marine environments. However, only a few bacteria of Thiomicrorhabdus have been isolated, and their ecological roles and environmental adaptations still require further understanding. Here, we report a novel strain, XGS-01T, isolated from a coastal sediment, which belongs to genus Thiomicrorhabdus and is most closely related to Thiomicrorhabdus hydrogeniphila MAS2T, with a sequence similarity of 97.8%. Phenotypic characterization showed that XGS-01T is a mesophilic, sulfur-oxidizing, obligate chemolithoautotrophy, with carbon dioxide as its sole carbon source and oxygen as its sole electron acceptor. During thiosulfate oxidation, strain XGS-01T can produce extracellular sulfur of elemental α-S8, as confirmed via scanning electron microscopy and Raman spectromicroscopy. Polyphasic taxonomy results indicate that strain XGS-01T represents a novel species of the genus Thiomicrorhabdus, named Thiomicrorhabdus lithotrophica sp. nov. Genomic analysis confirmed that XGS-01T performed thiosulfate oxidation through a sox multienzyme complex, and harbored fcc and sqr genes for sulfide oxidation. Comparative genomics analysis among five available genomes from Thiomicrorhabdus species revealed that carbon fixation via the oxidation of reduced-sulfur compounds coupled with oxygen reduction is conserved metabolic pathways among members of genus Thiomicrorhabdus.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China (J.W.); (R.W.)
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Han Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China (J.W.); (R.W.)
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China (J.W.); (R.W.)
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China (J.W.); (R.W.)
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Ruicheng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China (J.W.); (R.W.)
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
| | - Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China (J.W.); (R.W.)
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China (J.W.); (R.W.)
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361005, China
| |
Collapse
|
6
|
Ibáñez A, Garrido-Chamorro S, Coque JJR, Barreiro C. From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus. Genes (Basel) 2023; 14:1772. [PMID: 37761912 PMCID: PMC10531304 DOI: 10.3390/genes14091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Sulfur oxidation stands as a pivotal process within the Earth's sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic has made these bacteria a useful tool in bioleaching and biological desulfurization applications. Extensive research has unraveled diverse sulfur metabolism pathways and their corresponding regulatory systems. The metabolic arsenal of the Acidithiobacillus genus includes oxidative enzymes such as: (i) elemental sulfur oxidation enzymes, like sulfur dioxygenase (SDO), sulfur oxygenase reductase (SOR), and heterodisulfide reductase (HDR-like system); (ii) enzymes involved in thiosulfate oxidation pathways, including the sulfur oxidation (Sox) system, tetrathionate hydrolase (TetH), and thiosulfate quinone oxidoreductase (TQO); (iii) sulfide oxidation enzymes, like sulfide:quinone oxidoreductase (SQR); and (iv) sulfite oxidation pathways, such as sulfite oxidase (SOX). This review summarizes the current state of the art of sulfur metabolic processes in Acidithiobacillus species, which are key players of industrial biomining processes. Furthermore, this manuscript highlights the existing challenges and barriers to further exploring the sulfur metabolism of this peculiar extremophilic genus.
Collapse
Affiliation(s)
- Ana Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Área de Investigación Agrícola, 47071 Valladolid, Spain
| | - Sonia Garrido-Chamorro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Juan J. R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
| | - Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| |
Collapse
|
7
|
Sand W, Schippers A, Hedrich S, Vera M. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A. Appl Microbiol Biotechnol 2022; 106:6933-6952. [PMID: 36194263 PMCID: PMC9592645 DOI: 10.1007/s00253-022-12168-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Abstract Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides’ mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell–cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. Key points • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization
Collapse
Affiliation(s)
- Wolfgang Sand
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany. .,Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Deep-Sea
In Situ
Insights into the Formation of Zero-Valent Sulfur Driven by a Bacterial Thiosulfate Oxidation Pathway. mBio 2022; 13:e0014322. [PMID: 35852328 PMCID: PMC9426585 DOI: 10.1128/mbio.00143-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contribution of microbes to the deep-sea cold seep sulfur cycle has received considerable attention in recent years. In the previous study, we isolated
E. flavus
21-3 from deep-sea cold seep sediments and described a novel thiosulfate oxidation pathway in the laboratorial condition.
Collapse
|
9
|
Kanao T, Hase N, Nakayama H, Yoshida K, Nishiura K, Kosaka M, Kamimura K, Hirano Y, Tamada T. Reaction mechanism of tetrathionate hydrolysis based on the crystal structure of tetrathionate hydrolase from Acidithiobacillus ferrooxidans. Protein Sci 2021; 30:328-338. [PMID: 33103311 PMCID: PMC7784748 DOI: 10.1002/pro.3984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Tetrathionate hydrolase (4THase) plays an important role in dissimilatory sulfur oxidation in the acidophilic iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans. The structure of recombinant 4THase from A. ferrooxidans (Af-Tth) was determined by X-ray crystallography to a resolution of 1.95 Å. Af-Tth is a homodimer, and its monomer structure exhibits an eight-bladed β-propeller motif. Two insertion loops participate in dimerization, and one loop forms a cavity with the β-propeller region. We observed unexplained electron densities in this cavity of the substrate-soaked structure. The anomalous difference map generated using diffraction data collected at a wavelength of 1.9 Å indicated the presence of polymerized sulfur atoms. Asp325, a highly conserved residue among 4THases, was located near the polymerized sulfur atoms. 4THase activity was completely abolished in the site-specific Af-Tth D325N variant, suggesting that Asp325 plays a crucial role in the first step of tetrathionate hydrolysis. Considering that the Af-Tth reaction occurs only under acidic pH, Asp325 acts as an acid for the tetrathionate hydrolysis reaction. The polymerized sulfur atoms in the active site cavity may represent the intermediate product in the subsequent step.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Naruki Hase
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Hisayuki Nakayama
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Kyoya Yoshida
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Kazumi Nishiura
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Megumi Kosaka
- Department of Instrumental Analysis, Advanced Science Research CenterOkayama UniversityOkayamaJapan
| | - Kazuo Kamimura
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yu Hirano
- Institute for Quantum Life ScienceNational Institutes for Quantum and Radiological Science and TechnologyTokaiJapan
| | - Taro Tamada
- Institute for Quantum Life ScienceNational Institutes for Quantum and Radiological Science and TechnologyTokaiJapan
| |
Collapse
|
10
|
Genomic Analysis of a Newly Isolated Acidithiobacillus ferridurans JAGS Strain Reveals Its Adaptation to Acid Mine Drainage. MINERALS 2021. [DOI: 10.3390/min11010074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acidithiobacillus ferridurans JAGS is a newly isolated acidophile from an acid mine drainage (AMD). The genome of isolate JAGS was sequenced and compared with eight other published genomes of Acidithiobacillus. The pairwise mutation distance (Mash) and average nucleotide identity (ANI) revealed that isolate JAGS had a close evolutionary relationship with A. ferridurans JCM18981, but whole-genome alignment showed that it had higher similarity in genomic structure with A. ferrooxidans species. Pan-genome analysis revealed that nine genomes were comprised of 4601 protein coding sequences, of which 43% were core genes (1982) and 23% were unique genes (1064). A. ferridurans species had more unique genes (205–246) than A. ferrooxidans species (21–234). Functional gene categorizations showed that A. ferridurans strains had a higher portion of genes involved in energy production and conversion while A. ferrooxidans had more for inorganic ion transport and metabolism. A high abundance of kdp, mer and ars genes, as well as mobile genetic elements, was found in isolate JAGS, which might contribute to its resistance to harsh environments. These findings expand our understanding of the evolutionary adaptation of Acidithiobacillus and indicate that A. ferridurans JAGS is a promising candidate for biomining and AMD biotreatment applications.
Collapse
|
11
|
Vargas-Straube MJ, Beard S, Norambuena R, Paradela A, Vera M, Jerez CA. High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur. J Proteomics 2020; 225:103874. [PMID: 32569817 DOI: 10.1016/j.jprot.2020.103874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Acidithiobacillus ferrooxidans is an acidophilic bacterium able to grow in environments with high concentrations of metals. It is a chemolithoautotroph able to form biofilms on the surface of solid minerals to obtain its energy. The response of both planktonic and sessile cells of A. ferrooxidans ATCC 23270 grown in elemental sulfur and adapted to high copper concentration was analyzed by quantitative proteomics. It was found that 137 proteins varied their abundance when comparing both lifestyles. Copper effllux proteins, some subunits of the ATP synthase complex, porins, and proteins involved in cell wall modification increased their abundance in copper-adapted sessile lifestyle cells. On the other hand, planktonic copper-adapted cells showed increased levels of proteins such as: cupreredoxins involved in copper cell sequestration, some proteins related to sulfur metabolism, those involved in biosynthesis and transport of lipopolysaccharides, and in assembly of type IV pili. During copper adaptation a decreased formation of biofilms was measured as determined by epifluorescence microscopy. This was apparently due not only to a diminished number of sessile cells but also to their exopolysaccharides production. This is the first study showing that copper, a prevalent metal in biomining environments causes dispersion of A. ferrooxidans biofilms. SIGNIFICANCE: Copper is a metal frequently found in high concentrations at mining environments inhabitated by acidophilic microorganisms. Copper resistance determinants of A. ferrooxidans have been previously studied in planktonic cells. Although biofilms are recurrent in these types of environments, the effect of copper on their formation has not been studied so far. The results obtained indicate that high concentrations of copper reduce the capacity of A. ferrooxidans ATCC 23270 to form biofilms on sulfur. These findings may be relevant to consider for a bacterium widely used in copper bioleaching processes.
Collapse
Affiliation(s)
- M J Vargas-Straube
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - S Beard
- Fundación Ciencia y Vida, Santiago, Chile
| | - R Norambuena
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - A Paradela
- Proteomics Laboratory, National Biotechnology Center, CSIC, Madrid, Spain
| | - M Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.; Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile..
| |
Collapse
|
12
|
Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate. Appl Environ Microbiol 2019; 85:AEM.01381-19. [PMID: 31444204 DOI: 10.1128/aem.01381-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Microbially influenced corrosion (MIC) results in significant damage to metallic materials in many industries. Anaerobic sulfate-reducing bacteria (SRB) have been well studied for their involvement in these processes. Highly corrosive environments are also found in pulp and paper processing, where chloride and thiosulfate lead to the corrosion of stainless steels. Acidithiobacillus ferrooxidans is a critically important chemolithotrophic acidophile exploited in metal biomining operations, and there is interest in using A. ferrooxidans cells for emerging processes such as electronic waste recycling. We explored conditions under which A. ferrooxidans could enable the corrosion of stainless steel. Acidic medium with iron, chloride, low sulfate, and pyrite supplementation created an environment where unstable thiosulfate was continuously generated. When combined with the chloride, acid, and iron, the thiosulfate enabled substantial corrosion of stainless steel (SS304) coupons (mass loss, 5.4 ± 1.1 mg/cm2 over 13 days), which is an order of magnitude higher than what has been reported for SRB. There results were verified in an abiotic flow reactor, and the importance of mixing was also demonstrated. Overall, these results indicate that A. ferrooxidans and related pyrite-oxidizing bacteria could produce aggressive MIC conditions in certain environmental milieus.IMPORTANCE MIC of industrial equipment, gas pipelines, and military material leads to billions of dollars in damage annually. Thus, there is a clear need to better understand MIC processes and chemistries as efforts are made to ameliorate these effects. Additionally, A. ferrooxidans is a valuable acidophile with high metal tolerance which can continuously generate ferric iron, making it critical to copper and other biomining operations as well as a potential biocatalyst for electronic waste recycling. New MIC mechanisms may expand the utility of these cells in future metal resource recovery operations.
Collapse
|
13
|
Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. Front Microbiol 2019; 9:3290. [PMID: 30687275 PMCID: PMC6335251 DOI: 10.3389/fmicb.2018.03290] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
14
|
Razmilic V, Castro JF, Marchant F, Asenjo JA, Andrews B. Metabolic modelling and flux analysis of microorganisms from the Atacama Desert used in biotechnological processes. Antonie van Leeuwenhoek 2018; 111:1479-1491. [DOI: 10.1007/s10482-018-1031-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 01/16/2023]
|
15
|
Kanao T, Onishi M, Kajitani Y, Hashimoto Y, Toge T, Kikukawa H, Kamimura K. Characterization of tetrathionate hydrolase from the marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Biosci Biotechnol Biochem 2018; 82:152-160. [PMID: 29303046 DOI: 10.1080/09168451.2017.1415128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetrathionate hydrolase (4THase), a key enzyme of the S4-intermediate (S4I) pathway, was partially purified from marine acidophilic bacterium, Acidithiobacillus thiooxidans strain SH, and the gene encoding this enzyme (SH-tth) was identified. SH-Tth is a homodimer with a molecular mass of 97 ± 3 kDa, and contains a subunit 52 kDa in size. Enzyme activity was stimulated in the presence of 1 M NaCl, and showed the maximum at pH 3.0. Although 4THases from A. thiooxidans and the closely related Acidithiobacillus caldus strain have been reported to be periplasmic enzymes, SH-Tth seems to be localized on the outer membrane of the cell, and acts as a peripheral protein. Furthermore, both 4THase activity and SH-Tth proteins were detected in sulfur-grown cells of strain SH. These results suggested that SH-Tth is involved in elemental sulfur-oxidation, which is distinct from sulfur-oxidation in other sulfur-oxidizing strains such as A. thiooxidans and A. caldus.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | - Moe Onishi
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Yuki Hashimoto
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | - Tatsuya Toge
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Kazuo Kamimura
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| |
Collapse
|
16
|
Jiang L, Lyu J, Shao Z. Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment. Front Microbiol 2017; 8:2513. [PMID: 29312214 PMCID: PMC5733100 DOI: 10.3389/fmicb.2017.02513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiological characterizations showed that it is a microaerobic chemolithomixotroph that can utilize sulfide, thiosulfate, elemental sulfur, tetrathionate, thiocyanate or hydrogen as energy sources and molecular oxygen as the sole electron acceptor. During thiosulfate oxidation, the strain produced extracellular sulfur globules 0.7–6.0 μm in diameter that were mainly composed of elemental sulfur and carbon. Some organic substrates including amino acids, tryptone, yeast extract, casamino acids, casein, acetate, formate, citrate, propionate, tartrate, succinate, glucose and fructose can also serve as carbon sources, but growth is weaker than under CO2 conditions, indicating that strain S5 prefers to be chemolithoautotrophic. None of the tested organic carbons could function as energy sources. Growth tests under various conditions confirmed its adaption to a mesophilic mixing zone of hydrothermal vents in which vent fluid was mixed with cold seawater, preferring moderate temperatures (optimal 37°C), alkaline pH (optimal pH 8.0), microaerobic conditions (optimal 4% O2), and reduced sulfur compounds (e.g., sulfide, optimal 100 μM). Comparative genomics showed that strain S5 possesses more complex sulfur metabolism systems than other members of genus Hydrogenovibrio. The genes encoding the intracellular sulfur oxidation protein (DsrEF) and assimilatory sulfate reduction were first reported in the genus Hydrogenovibrio. In summary, the versatility in energy and carbon sources, and unique physiological properties of this bacterium have facilitated its adaptation to deep-sea hydrothermal vent environments.
Collapse
Affiliation(s)
- Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,Fujian Collaborative Innovation Center of Marine Biological Resources, Xiamen, China
| | - Jie Lyu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,Fujian Collaborative Innovation Center of Marine Biological Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,Fujian Collaborative Innovation Center of Marine Biological Resources, Xiamen, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Wu W, Pang X, Lin J, Liu X, Wang R, Lin J, Chen L. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus. PLoS One 2017; 12:e0183668. [PMID: 28873420 PMCID: PMC5584763 DOI: 10.1371/journal.pone.0183668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identified SDO (A5904_0790). We cloned and expressed these genes, and detected the SDO activity of recombinant protein A5904_0421 by a GSH-dependent in vitro assay. Phylogenetic analysis indicated that A5904_0421and its homologous SDOs, mainly found in autotrophic bacteria, were distantly related to known SDOs and were categorized as a new subgroup of SDOs. The potential functions of genes A5904_0421 (termed sdo1) and A5904_0790 (termed sdo2) were investigated by generating three knockout mutants (Δsdo1, Δsdo2 and Δsdo1&2), two sdo overexpression strains (OE-sdo1 and OE-sdo2) and two sdo complemented strains (Δsdo1/sdo1’ and Δsdo2/sdo2’) of A. caldus MTH-04. Deletion or overexpression of the sdo genes did not obviously affect growth of the bacteria on S0, indicating that the SDOs did not play an essential role in the oxidation of extracellular elemental sulfur in A. caldus. The deletion of sdo1 resulted in complete inhibition of growth on tetrathionate, slight inhibition of growth on thiosulfate and increased GSH-dependent sulfur oxidation activity on S0. Transcriptional analysis revealed a strong correlation between sdo1 and the tetrathionate intermediate pathway. The deletion of sdo2 promoted bacterial growth on tetrathionate and thiosulfate, and overexpression of sdo2 altered gene expression patterns of sulfide:quinone oxidoreductase and rhodanese. Taken together, the results suggest that sdo1 is essential for the survival of A. caldus when tetrathionate is used as the sole energy resource, and sdo2 may also play a role in sulfur metabolism.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- * E-mail: (JL); (LC)
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- * E-mail: (JL); (LC)
| |
Collapse
|
18
|
Balci N, Brunner B, Turchyn AV. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage. Front Microbiol 2017; 8:1564. [PMID: 28861071 PMCID: PMC5562728 DOI: 10.3389/fmicb.2017.01564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62-) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4-S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4-S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between -1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4-S0 of -0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4-H2O) of -4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns.
Collapse
Affiliation(s)
- Nurgul Balci
- Geomicrobiolog-Biogeochemistry Lab, Department of Geological Engineering, Istanbul Technical UniversityIstanbul, Turkey
| | - Benjamin Brunner
- Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
- Department of Geological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | | |
Collapse
|
19
|
Yu Y, Liu X, Wang H, Li X, Lin J. Construction and characterization of tetH overexpression and knockout strains of Acidithiobacillus ferrooxidans. J Bacteriol 2014; 196:2255-64. [PMID: 24727223 PMCID: PMC4054192 DOI: 10.1128/jb.01472-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/28/2014] [Indexed: 11/20/2022] Open
Abstract
Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for bioleaching. It can obtain energy from the oxidation of Fe(2+), H2, S(0), and various reduced inorganic sulfur compounds (RISCs). Tetrathionate is a key intermediate during RISC oxidation, hydrolyzed by tetrathionate hydrolase (TetH), and used as sole energy source. In this study, a tetH knockout (ΔtetH) mutant and a tetH overexpression strain were constructed and characterized. The tetH overexpression strain grew better on sulfur and tetrathionate and possessed a higher rate of tetrathionate utilization and TetH activity than the wild type. However, its cell yields on tetrathionate were much lower than those on sulfur. The ΔtetH mutant could not grow on tetrathionate but could proliferate on sulfur with a lower cell yield than the wild type's, which indicated that tetrathionate hydrolysis is mediated only by TetH, encoded by tetH. The ΔtetH mutant could survive in ferrous medium with an Fe(2+) oxidation rate similar to that of the wild type. For the tetH overexpression strain, the rate was relatively higher than that of the wild type. The reverse transcription-quantitative PCR (qRT-PCR) results showed that tetH and doxD2 acted synergistically, and doxD2 was considered important in thiosulfate metabolism. Of the two sqr genes, AFE_0267 seemed to play as important a role in sulfide oxidation as AFE_1792. This study not only provides a substantial basis for studying the function of the tetH gene but also may serve as a model to clarify other candidate genes involved in sulfur oxidation in this organism.
Collapse
Affiliation(s)
- Yangyang Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Huiyan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Xiuting Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
20
|
Kanao T, Kosaka M, Yoshida K, Nakayama H, Tamada T, Kuroki R, Yamada H, Takada J, Kamimura K. Crystallization and preliminary X-ray diffraction analysis of tetrathionate hydrolase from Acidithiobacillus ferrooxidans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:692-4. [PMID: 23722856 PMCID: PMC3668597 DOI: 10.1107/s1744309113013419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Tetrathionate hydrolase (4THase) from the iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans catalyses the disproportionate hydrolysis of tetrathionate to elemental sulfur, thiosulfate and sulfate. The gene encoding 4THase (Af-tth) was expressed as inclusion bodies in recombinant Escherichia coli. Recombinant Af-Tth was activated by refolding under acidic conditions and was then purified to homogeneity. The recombinant protein was crystallized in 20 mM glycine buffer pH 10 containing 50 mM sodium chloride and 33%(v/v) PEG 1000 using the hanging-drop vapour-diffusion method. The crystal was a hexagonal cylinder with dimensions of 0.2 × 0.05 × 0.05 mm. X-ray crystallographic analysis showed that the crystal diffracted to 2.15 Å resolution and belongs to space group P3(1) or P3(2), with unit-cell parameters a = b = 92.1, c = 232.6 Å.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Megumi Kosaka
- Department of Instrumental Analysis, Advanced Science Research Center, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Kyoya Yoshida
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Hisayuki Nakayama
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Taro Tamada
- Molecular Biology Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4, Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | - Ryota Kuroki
- Molecular Biology Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4, Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | - Hidenori Yamada
- Department of Instrumental Analysis, Advanced Science Research Center, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Jun Takada
- Department of Material Chemistry, Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuo Kamimura
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
21
|
Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching. J Ind Microbiol Biotechnol 2012; 39:1833-40. [PMID: 22968225 DOI: 10.1007/s10295-012-1190-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.
Collapse
|
22
|
Krupovic M, Peixeiro N, Bettstetter M, Rachel R, Prangishvili D. Archaeal tetrathionate hydrolase goes viral: secretion of a sulfur metabolism enzyme in the form of virus-like particles. Appl Environ Microbiol 2012; 78:5463-5. [PMID: 22636008 PMCID: PMC3416430 DOI: 10.1128/aem.01186-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/20/2012] [Indexed: 11/20/2022] Open
Abstract
In the course of screening for virus-host systems in extreme thermal environments, we have isolated a strain of the hyperthermophilic archaeaon Acidianus hospitalis producing unusual filamentous particles with a zipper-like appearance. The particles were shown to represent a secreted form of a genuine cellular enzyme, tetrathionate hydrolase, involved in sulfur metabolism.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Department of Microbiology, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | - Nuno Peixeiro
- Institut Pasteur, Department of Microbiology, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | | | - Reinhard Rachel
- University of Regensburg Centre for EM/Anatomy, Faculty of Biology & Preclinical Medicine, Regensburg, Germany
| | - David Prangishvili
- Institut Pasteur, Department of Microbiology, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| |
Collapse
|