1
|
Peng Y, Lu Z, Pan D, Shi LD, Zhao Z, Liu Q, Zhang C, Jia K, Li J, Hubert CRJ, Dong X. Viruses in deep-sea cold seep sediments harbor diverse survival mechanisms and remain genetically conserved within species. THE ISME JOURNAL 2023; 17:1774-1784. [PMID: 37573455 PMCID: PMC10504277 DOI: 10.1038/s41396-023-01491-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Deep sea cold seep sediments have been discovered to harbor novel, abundant, and diverse bacterial and archaeal viruses. However, little is known about viral genetic features and evolutionary patterns in these environments. Here, we examined the evolutionary ecology of viruses across active and extinct seep stages in the area of Haima cold seeps in the South China Sea. A total of 338 viral operational taxonomic units are identified and linked to 36 bacterial and archaeal phyla. The dynamics of host-virus interactions are informed by diverse antiviral defense systems across 43 families found in 487 microbial genomes. Cold seep viruses are predicted to harbor diverse adaptive strategies to persist in this environment, including counter-defense systems, auxiliary metabolic genes, reverse transcriptases, and alternative genetic code assignments. Extremely low nucleotide diversity is observed in cold seep viral populations, being influenced by factors including microbial host, sediment depth, and cold seep stage. Most cold seep viral genes are under strong purifying selection with trajectories that differ depending on whether cold seeps are active or extinct. This work sheds light on the understanding of environmental adaptation mechanisms and evolutionary patterns of viruses in the sub-seafloor biosphere.
Collapse
Affiliation(s)
- Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Zijian Lu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Donald Pan
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhao Zhao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Qing Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
2
|
Dong X, Peng Y, Wang M, Woods L, Wu W, Wang Y, Xiao X, Li J, Jia K, Greening C, Shao Z, Hubert CRJ. Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps. Nat Commun 2023; 14:1127. [PMID: 36854684 PMCID: PMC9974965 DOI: 10.1038/s41467-023-36877-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Deep sea cold seep sediments host abundant and diverse microbial populations that significantly influence biogeochemical cycles. While numerous studies have revealed their community structure and functional capabilities, little is known about genetic heterogeneity within species. Here, we examine intraspecies diversity patterns of 39 abundant species identified in sediment layers down to 430 cm below the sea floor across six cold seep sites. These populations are grouped as aerobic methane-oxidizing bacteria, anaerobic methanotrophic archaea and sulfate-reducing bacteria. Different evolutionary trajectories are observed at the genomic level among these physiologically and phylogenetically diverse populations, with generally low rates of homologous recombination and strong purifying selection. Functional genes related to methane (pmoA and mcrA) and sulfate (dsrA) metabolisms are under strong purifying selection in most species investigated. These genes differ in evolutionary trajectories across phylogenetic clades but are functionally conserved across sites. Intrapopulation diversification of genomes and their mcrA and dsrA genes is depth-dependent and subject to different selection pressure throughout the sediment column redox zones at different sites. These results highlight the interplay between ecological processes and the evolution of key bacteria and archaea in deep sea cold seep extreme environments, shedding light on microbial adaptation in the subseafloor biosphere.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Muhua Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Laura Woods
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wenxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510075, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
3
|
Gittins DA, Desiage PA, Morrison N, Rattray JE, Bhatnagar S, Chakraborty A, Zorz J, Li C, Horanszky O, Cramm MA, Bisiach F, Bennett R, Webb J, MacDonald A, Fowler M, Campbell DC, Hubert CRJ. Geological processes mediate a microbial dispersal loop in the deep biosphere. SCIENCE ADVANCES 2022; 8:eabn3485. [PMID: 36026445 PMCID: PMC9417182 DOI: 10.1126/sciadv.abn3485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The deep biosphere is the largest microbial habitat on Earth and features abundant bacterial endospores. Whereas dormancy and survival at theoretical energy minima are hallmarks of microbial physiology in the subsurface, ecological processes such as dispersal and selection in the deep biosphere remain poorly understood. We investigated the biogeography of dispersing bacteria in the deep sea where upward hydrocarbon seepage was confirmed by acoustic imagery and geochemistry. Thermophilic endospores in the permanently cold seabed correlated with underlying seep conduits reveal geofluid-facilitated cell migration pathways originating in deep petroleum-bearing sediments. Endospore genomes highlight adaptations to life in anoxic petroleum systems and bear close resemblance to oil reservoir microbiomes globally. Upon transport out of the subsurface, viable thermophilic endospores reenter the geosphere by sediment burial, enabling germination and environmental selection at depth where new petroleum systems establish. This microbial dispersal loop circulates living biomass in and out of the deep biosphere.
Collapse
Affiliation(s)
- Daniel A. Gittins
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
- Corresponding author.
| | | | - Natasha Morrison
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | - Jayne E. Rattray
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Srijak Bhatnagar
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - Jackie Zorz
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Carmen Li
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Oliver Horanszky
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Margaret A. Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Francesco Bisiach
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Robbie Bennett
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Jamie Webb
- Applied Petroleum Technology, Calgary, Canada
| | - Adam MacDonald
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | | | - D. Calvin Campbell
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Abstract
Beneath the seafloor, microbial life subsists in isolation from the surface world under persistent energy limitation. The nature and extent of genomic evolution in subseafloor microbes have been unknown. Here, we show that the genomes of Thalassospira bacterial populations cultured from million-year-old subseafloor sediments evolve in clonal populations by point mutation, with a relatively low rate of homologous recombination and elevated numbers of pseudogenes. Ratios of nonsynonymous to synonymous substitutions correlate with the accumulation of pseudogenes, consistent with a role for genetic drift in the subseafloor strains but not in type strains of Thalassospira isolated from the surface world. Consistent with this, pangenome analysis reveals that the subseafloor bacterial genomes have a significantly lower number of singleton genes than the type strains, indicating a reduction in recent gene acquisitions. Numerous insertion-deletion events and pseudogenes were present in a flagellar operon of the subseafloor bacteria, indicating that motility is nonessential in these million-year-old subseafloor sediments. This genomic evolution in subseafloor clonal populations coincided with a phenotypic difference: all subseafloor isolates have a lower rate of growth under laboratory conditions than the Thalassospira xiamenensis type strain. Our findings demonstrate that the long-term physical isolation of Thalassospira, in the absence of recombination, has resulted in clonal populations whereby reduced access to novel genetic material from neighbors has resulted in the fixation of new mutations that accumulate in genomes over millions of years.
Collapse
|
5
|
Shoemaker WR, Jones SE, Muscarella ME, Behringer MG, Lehmkuhl BK, Lennon JT. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc Natl Acad Sci U S A 2021; 118:e2101691118. [PMID: 34385301 PMCID: PMC8379937 DOI: 10.1073/pnas.2101691118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 100 to 105 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405;
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | | | | | - Brent K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, 47405
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405;
| |
Collapse
|
6
|
Abstract
The deep marine subsurface constitutes a massive biosphere that hosts a multitude of archaea, bacteria, and viruses across a diversity of habitats. These microbes play key roles in mediating global biogeochemical cycles, and the marine subsurface is thought to have been among the earliest habitats for life on Earth. Yet we have a poor understanding of what forces govern the evolution of subsurface microbes over time. Here, I outline why evolutionary trajectories in the subsurface may be different than those of microbes living on the surface of the planet and describe how we can take advantage of technological advancements to study the evolutionary dynamics of subsurface microbes and their viruses. The sequencing revolution, in tandem with marine infrastructure advancements, promises that we will soon gain a much deeper understanding of how the vast majority of the microbial biosphere changes, adapts, and evolves over time.
Collapse
|
7
|
Vuillemin A, Kerrigan Z, D'Hondt S, Orsi WD. Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay. FEMS Microbiol Ecol 2020; 96:fiaa223. [PMID: 33150943 PMCID: PMC7688785 DOI: 10.1093/femsec/fiaa223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
Chloroflexi are widespread in subsurface environments, and recent studies indicate that they represent a major fraction of the communities in subseafloor sediment. Here, we compare the abundance, diversity, metabolic potential and gene expression of Chloroflexi from three abyssal sediment cores from the western North Atlantic Gyre (water depth >5400 m) covering up to 15 million years of sediment deposition, where Chloroflexi were found to represent major components of the community at all sites. Chloroflexi communities die off in oxic red clay over 10-15 million years, and gene expression was below detection. In contrast, Chloroflexi abundance and gene expression at the anoxic abyssal clay site increase below the seafloor and peak in 2-3 million-year-old sediment, indicating a comparably higher activity. Metatranscriptomes from the anoxic site reveal increased expression of Chloroflexi genes involved in cell wall biogenesis, protein turnover, inorganic ion transport, defense mechanisms and prophages. Phylogenetic analysis shows that these Chloroflexi are closely related to homoacetogenic subseafloor clades and actively transcribe genes involved in sugar fermentations, gluconeogenesis and Wood-Ljungdahl pathway in the subseafloor. Concomitant expression of cell division genes indicates that these putative homoacetogenic Chloroflexi are actively growing in these million-year-old anoxic abyssal sediments.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| | - Zak Kerrigan
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| |
Collapse
|
8
|
Mullin SW, Wanger G, Kruger BR, Sackett JD, Hamilton-Brehm SD, Bhartia R, Amend JP, Moser DP, Orphan VJ. Patterns of in situ Mineral Colonization by Microorganisms in a ~60°C Deep Continental Subsurface Aquifer. Front Microbiol 2020; 11:536535. [PMID: 33329414 PMCID: PMC7711152 DOI: 10.3389/fmicb.2020.536535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells.
Collapse
Affiliation(s)
- Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Greg Wanger
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Brittany R Kruger
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Joshua D Sackett
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Scott D Hamilton-Brehm
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Rohit Bhartia
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Duane P Moser
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
Kerrigan Z, Kirkpatrick JB, D'Hondt S. Influence of 16S rRNA Hypervariable Region on Estimates of Bacterial Diversity and Community Composition in Seawater and Marine Sediment. Front Microbiol 2019; 10:1640. [PMID: 31379788 PMCID: PMC6646839 DOI: 10.3389/fmicb.2019.01640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
To assess the influence of 16S ribosomal RNA (rRNA) tag choice on estimates of microbial diversity and/or community composition in seawater and marine sediment, we examined bacterial diversity and community composition from a site in the Central North Atlantic and a site in the Equatorial Pacific. For each site, we analyzed samples from four zones in the water column, a seafloor sediment sample, and two subseafloor sediment horizons (with stratigraphic ages of 1.5 and 5.5 million years old). We amplified both the V4 and V6 hypervariable regions of the 16S rRNA gene and clustered the sequences into operational taxonomic units (OTUs) of 97% similarity to analyze for diversity and community composition. OTU richness is much higher with the V6 tag than with the V4 tag, and subsequently OTU-level community composition is quite different between the two tags. Vertical patterns of relative diversity are broadly the same for both tags, with maximum taxonomic richness in seafloor sediment and lowest richness in subseafloor sediment at both geographic locations. Genetic dissimilarity between sample locations is also broadly the same for both tags. Community composition is very similar for both tags at the class level, but very different at the level of 97% similar OTUs. Class-level diversity and community composition of water-column samples are very similar at each water depth between the Atlantic and Pacific. However, sediment communities differ greatly from the Atlantic site to the Pacific site. Finally, for relative patterns of diversity and class-level community composition, deep sequencing and shallow sequencing provide similar results.
Collapse
Affiliation(s)
- Zak Kerrigan
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| | | | - Steven D'Hondt
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| |
Collapse
|
10
|
Kirkpatrick JB, Walsh EA, D'Hondt S. Microbial Selection and Survival in Subseafloor Sediment. Front Microbiol 2019; 10:956. [PMID: 31139156 PMCID: PMC6527604 DOI: 10.3389/fmicb.2019.00956] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/16/2019] [Indexed: 01/23/2023] Open
Abstract
Many studies have examined relationships of microorganisms to geochemical zones in subseafloor sediment. However, responses to selective pressure and patterns of community succession with sediment depth have rarely been examined. Here we use 16S rDNA sequencing to examine the succession of microbial communities at sites in the Indian Ocean and the Bering Sea. The sediment ranges in depth from 0.16 to 332 m below seafloor and in age from 660 to 1,300,000 years. The majority of subseafloor taxonomic diversity is present in the shallowest depth sampled. The best predictor of sequence presence or absence in the oldest sediment is relative abundance in the near-seafloor sediment. This relationship suggests that perseverance of specific taxa into deep, old sediment is primarily controlled by the taxonomic abundance that existed when the sediment was near the seafloor. The operational taxonomic units that dominate at depth comprise a subset of the local seafloor community at each site, rather than a grown-in group of geographically widespread subseafloor specialists. At both sites, most taxa classified as abundant decrease in relative frequency with increasing sediment depth and age. Comparison of community composition to cell counts at the Bering Sea site indicates that the rise of the few dominant taxa in the deep subseafloor community does not require net replication, but might simply result from lower mortality relative to competing taxa on the long timescale of community burial.
Collapse
Affiliation(s)
- John B Kirkpatrick
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States.,The Evergreen State College, Olympia, WA, United States
| | - Emily A Walsh
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| | - Steven D'Hondt
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| |
Collapse
|
11
|
Meyer-Dombard DR, Osburn MR, Cardace D, Arcilla CA. The Effect of a Tropical Climate on Available Nutrient Resources to Springs in Ophiolite-Hosted, Deep Biosphere Ecosystems in the Philippines. Front Microbiol 2019; 10:761. [PMID: 31118921 PMCID: PMC6504838 DOI: 10.3389/fmicb.2019.00761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Springs hosted in ophiolites are often affected by serpentinization processes. The characteristically low DIC and high CH4 and H2 gas concentrations of serpentinizing ecosystems have led to interest in hydrogen based metabolisms in these subsurface biomes. However, a true subsurface signature can be difficult to identify in surface expressions such as serpentinizing springs. Here, we explore carbon and nitrogen resources in serpentinization impacted springs in the tropical climate of the Zambales and Palawan ophiolites in the Philippines, with a focus on surface vs. subsurface processes and exogenous vs. endogenous nutrient input. Isotopic signatures in spring fluids, biomass, and carbonates were examined to identify sources and sinks of carbon and nitrogen, carbonate geochemistry, and the effect of seasonal precipitation. Seasonality affected biomass production in both low flow and high flow spring systems. Changes in meteorological precipitation affected δ13CDIC and δ13CDOC values of the spring fluids, which reflected seasonal gain/loss of atmospheric influence and changes in exogenous DOC input. The primary carbon source in high flow systems was variable, with DOC contributing to biomass in many springs, and a mix of DIC and carbonates contributing to biomass in select locations. However, primary carbon resources in low flow systems may depend more on endogenous than exogenous carbon, even in high precipitation seasons. Isotopic evidence for nitrogen fixation was identified, with seasonal influence only seen in low flow systems. Carbonate formation was found to occur as a mixture of recrystallization/recycling of older carbonates and rapid mineral precipitation (depending on the system), with highly δ13C and δ18O depleted carbonates occurring in many locations. Subsurface signatures (e.g., low DOC influence on Cbiomass) were most apparent in the driest seasons and lowest flow systems, indicating locations where metabolic processes divorced from surface influences (including hydrogen based metabolisms) are most likely to be occurring.
Collapse
Affiliation(s)
- D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Magdelena R. Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, United States
| | - Dawn Cardace
- Department of Geosciences, The University of Rhode Island, Kingston, RI, United States
| | - Carlo A. Arcilla
- Director of Science and Technology-Philippine Nuclear Research Institute, Manilla, Philippines
| |
Collapse
|
12
|
Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India. Sci Rep 2018; 8:17459. [PMID: 30498254 PMCID: PMC6265293 DOI: 10.1038/s41598-018-35940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
Scientific deep drilling at Koyna, western India provides a unique opportunity to explore microbial life within deep biosphere hosted by ~65 Myr old Deccan basalt and Archaean granitic basement. Characteristic low organic carbon content, mafic/felsic nature but distinct trend in sulfate and nitrate concentrations demarcates the basaltic and granitic zones as distinct ecological habitats. Quantitative PCR indicates a depth independent distribution of microorganisms predominated by bacteria. Abundance of dsrB and mcrA genes are relatively higher (at least one order of magnitude) in basalt compared to granite. Bacterial communities are dominated by Alpha-, Beta-, Gammaproteobacteria, Actinobacteria and Firmicutes, whereas Euryarchaeota is the major archaeal group. Strong correlation among the abundance of autotrophic and heterotrophic taxa is noted. Bacteria known for nitrite, sulfur and hydrogen oxidation represent the autotrophs. Fermentative, nitrate/sulfate reducing and methane metabolising microorganisms represent the heterotrophs. Lack of shared operational taxonomic units and distinct clustering of major taxa indicate possible community isolation. Shotgun metagenomics corroborate that chemolithoautotrophic assimilation of carbon coupled with fermentation and anaerobic respiration drive this deep biosphere. This first report on the geomicrobiology of the subsurface of Deccan traps provides an unprecedented opportunity to understand microbial composition and function in the terrestrial, igneous rock-hosted, deep biosphere.
Collapse
|
13
|
Reduction spheroids preserve a uranium isotope record of the ancient deep continental biosphere. Nat Commun 2018; 9:4505. [PMID: 30374101 PMCID: PMC6206012 DOI: 10.1038/s41467-018-06974-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022] Open
Abstract
Life on Earth extends to several kilometres below the land surface and seafloor. This deep biosphere is second only to plants in its total biomass, is metabolically active and diverse, and is likely to have played critical roles over geological time in the evolution of microbial diversity, diagenetic processes and biogeochemical cycles. However, these roles are obscured by a paucity of fossil and geochemical evidence. Here we apply the recently developed uranium-isotope proxy for biological uranium reduction to reduction spheroids in continental rocks (red beds). Although these common palaeo-redox features have previously been suggested to reflect deep bacterial activity, unequivocal evidence for biogenicity has been lacking. Our analyses reveal that the uranium present in reduction spheroids is isotopically heavy, which is most parsimoniously explained as a signal of ancient bacterial uranium reduction, revealing a compelling record of Earth’s deep biosphere. Red beds contain reduction spheroids that formed underground millions of years ago and whose origin remains poorly constrained. Here the authors use uranium isotopes to identify ancient fingerprints of bacteria in these features, confirming that they were produced by subsurface life in the geological past.
Collapse
|
14
|
Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol 2018; 16:671-683. [DOI: 10.1038/s41579-018-0046-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Humphris SE, Klein F. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:315-343. [PMID: 28853997 DOI: 10.1146/annurev-marine-121916-063233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the last four decades, more than 500 sites of seafloor hydrothermal venting have been identified in a range of tectonic environments. These vents represent the seafloor manifestation of hydrothermal convection of seawater through the permeable oceanic basement that is driven by a subsurface heat source. Hydrothermal circulation has fundamental effects on the transfer of heat and mass from the lithosphere to the hydrosphere, the composition of seawater, the physical and chemical properties of the oceanic basement, and vent ecosystems at and below the seafloor. In this review, we compare and contrast the vent fluid chemistry from hydrothermal fields in a range of tectonic settings to assess the relative roles of fluid-mineral equilibria, phase separation, magmatic input, seawater entrainment, and sediment cover in producing the observed range of fluid compositions. We focus particularly on hydrothermal activity in those tectonic environments (e.g., mid-ocean ridge detachment faults, back-arc basins, and island arc volcanoes) where significant progress has been made in the last decade in documenting the variations in vent fluid composition.
Collapse
Affiliation(s)
- Susan E Humphris
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543;
| | - Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
16
|
Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, Seewald JS, Huber JA. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun 2017; 8:1114. [PMID: 29066755 PMCID: PMC5655027 DOI: 10.1038/s41467-017-01228-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023] Open
Abstract
Little is known about evolutionary drivers of microbial populations in the warm subseafloor of deep-sea hydrothermal vents. Here we reconstruct 73 metagenome-assembled genomes (MAGs) from two geochemically distinct vent fields in the Mid-Cayman Rise to investigate patterns of genomic variation within subseafloor populations. Low-abundance populations with high intra-population diversity coexist alongside high-abundance populations with low genomic diversity, with taxonomic differences in patterns of genomic variation between the mafic Piccard and ultramafic Von Damm vent fields. Populations from Piccard are significantly enriched in nonsynonymous mutations, suggesting stronger purifying selection in Von Damm relative to Piccard. Comparison of nine Sulfurovum MAGs reveals two high-coverage, low-diversity MAGs from Piccard enriched in unique genes related to the cellular membrane, suggesting these populations were subject to distinct evolutionary pressures that may correlate with genes related to nutrient uptake, biofilm formation, or viral invasion. These results are consistent with distinct evolutionary histories between geochemically different vent fields, with implications for understanding evolutionary processes in subseafloor microbial populations.
Collapse
Affiliation(s)
- Rika E Anderson
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Department of Biology, Carleton College, Northfield, MN, 55057, USA.
| | - Julie Reveillaud
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cirad UMR 117, Inra UMR 1309 ASTRE, Cirad Campus International de Baillarguet, Montpellier, France
| | - Emily Reddington
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Great Pond Foundation, Edgartown, MA, 02539, USA
| | - Tom O Delmont
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jill M McDermott
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jeff S Seewald
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
17
|
Abstract
Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
Collapse
|
18
|
Fullerton H, Moyer CL. Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere. Appl Environ Microbiol 2016; 82:3000-3008. [PMID: 26969693 PMCID: PMC4959059 DOI: 10.1128/aem.00624-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. IMPORTANCE Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene (rdhA) has been directly linked to marine subsurface Chloroflexi, suggesting that reductive dehalogenation is not limited to the class Dehalococcoidia This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Craig L Moyer
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
19
|
Bukin SV, Pavlova ON, Manakov AY, Kostyreva EA, Chernitsyna SM, Mamaeva EV, Pogodaeva TV, Zemskaya TI. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions. Front Microbiol 2016; 7:690. [PMID: 27242716 PMCID: PMC4861714 DOI: 10.3389/fmicb.2016.00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.
Collapse
Affiliation(s)
- Sergei V Bukin
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Olga N Pavlova
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Andrei Y Manakov
- Laboratory of Clathrate Compounds, Nikolaev Institute of Inorganic Chemistry, Russian Academy of Science Novosibirsk, Russia
| | - Elena A Kostyreva
- Laboratory of Petroleum Geochemistry, Trofimuk Institute of Petroleum Geology and Geophysics, Russian Academy of Science Novosibirsk, Russia
| | - Svetlana M Chernitsyna
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Elena V Mamaeva
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Tatyana V Pogodaeva
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Tamara I Zemskaya
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| |
Collapse
|
20
|
Orcutt BN, Larowe DE, Biddle JF, Colwell FS, Glazer BT, Reese BK, Kirkpatrick JB, Lapham LL, Mills HJ, Sylvan JB, Wankel SD, Wheat CG. Microbial activity in the marine deep biosphere: progress and prospects. Front Microbiol 2013; 4:189. [PMID: 23874326 PMCID: PMC3708129 DOI: 10.3389/fmicb.2013.00189] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/20/2013] [Indexed: 11/17/2022] Open
Abstract
The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org).
Collapse
Affiliation(s)
- Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Teske A, Biddle JF, Edgcomb VP, Schippers A. Deep subsurface microbiology: a guide to the research topic papers. Front Microbiol 2013; 4:122. [PMID: 23720656 PMCID: PMC3655269 DOI: 10.3389/fmicb.2013.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
22
|
Assessment of Microbial Richness in Pelagic Sediment of Andaman Sea by Bacterial Tag Encoded FLX Titanium Amplicon Pyrosequencing (bTEFAP). Indian J Microbiol 2012; 52:544-50. [PMID: 24293708 DOI: 10.1007/s12088-012-0310-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/18/2012] [Indexed: 01/07/2023] Open
Abstract
Microbial diversity of 1,000 m deep pelagic sediment from off Coast of Andaman Sea was analyzed by a culture independent technique, bacterial tag encoded FLX titanium amplicon pyrosequencing. The hypervariable region of small subunit ribosomal rRNA gene covering V6-V9, was amplified from the metagenomic DNA and sequenced. We obtained 19,271 reads, of which 18,206 high quality sequences were subjected to diversity analysis. A total of 305 operational taxonomic units (OTUs) were obtained corresponding to the members of firmicutes, proteobacteria, plantomycetes, actinobacteria, chloroflexi, bacteroidetes, and verucomicrobium. Firmicutes was the predominant phylum, which was largely represented with the family bacillaceae. More than 44 % of sequence reads could not be classified up to the species level and more than 14 % of the reads could not be assigned to any genus. Thus, the data indicates the possibility for the presence of uncultivable or unidentified novel bacterial species. In addition, the community structure identified in this study significantly differs with other reports from marine sediments.
Collapse
|