1
|
Liu H, Jing H, Wang F. Archaea predominate in the ammonia oxidation process in the sediments of the Yap and Mariana Trenches. Front Microbiol 2023; 14:1268790. [PMID: 37840747 PMCID: PMC10568479 DOI: 10.3389/fmicb.2023.1268790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play an important role in oxidizing ammonia to nitrite in different marine environments; however, their relative contribution to ammonia oxidation in the deep-sea sediments is still largely unknown. Sediment samples from seamounts and the Challenger Deep along the arc of the Yap Trench and the Mariana Trench were used for the investigation of the geographical distribution of AOA and AOB at the cDNA level, with associated potential nitrification rates (PNRs) being measured. AOA was predominated by Candidatus Nitrosopumilus and Nitrosopumilaceae, while Methylophaga was the major group of AOB. Significantly higher transcript abundance of the AOA amoA gene than that of AOB appeared in all samples, corresponding to the much higher RNRs contributed to AOA. Both the total and AOA PNRs were significantly higher in the deeper layers due to the high sensitivity of AOA to ammonia and oxygen than in AOB. In the surface layers, TN and TOC had significant positive and negative effects on the distribution of the AOA amoA gene transcripts, respectively, while NH 4 + concentration was positively correlated with the AOB amoA gene transcripts. Our study demonstrated that AOA played a more important role than AOB in the ammonia-oxidizing process that occurred in the sediments of the Yap and Mariana Trenches and would expand the understanding of their ecological contribution to the nitrification process and nitrogen flux of trenches.
Collapse
Affiliation(s)
- Hao Liu
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Fangzhou Wang
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhou Z, St John E, Anantharaman K, Reysenbach AL. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. MICROBIOME 2022; 10:241. [PMID: 36572924 PMCID: PMC9793634 DOI: 10.1186/s40168-022-01424-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND When deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles. RESULTS Our dataset represents 3635 metagenome-assembled genomes encompassing 511 novel and recently identified genera from deep-sea hydrothermal settings. Some of the novel bacterial (107) and archaeal genera (30) that were recently reported from the deep-sea Brothers volcano were also detected at the deep-sea hydrothermal vent fields, while 99 bacterial and 54 archaeal genera were endemic to the deep-sea Brothers volcano deposits. We report some of the first examples of medium- (≥ 50% complete, ≤ 10% contaminated) to high-quality (> 90% complete, < 5% contaminated) MAGs from phyla and families never previously identified, or poorly sampled, from deep-sea hydrothermal environments. We greatly expand the novel diversity of Thermoproteia, Patescibacteria (Candidate Phyla Radiation, CPR), and Chloroflexota found at deep-sea hydrothermal vents and identify a small sampling of two potentially novel phyla, designated JALSQH01 and JALWCF01. Metabolic pathway analysis of metagenomes provides insights into the prevalent carbon, nitrogen, sulfur, and hydrogen metabolic processes across all sites and illustrates sulfur and nitrogen metabolic "handoffs" in community interactions. We confirm that Campylobacteria and Gammaproteobacteria occupy similar ecological guilds but their prevalence in a particular site is driven by shifts in the geochemical environment. CONCLUSION Our study of globally distributed hydrothermal vent deposits provides a significant expansion of microbial genomic diversity associated with hydrothermal vent deposits and highlights the metabolic adaptation of taxonomic guilds. Collectively, our results illustrate the importance of comparative biodiversity studies in establishing patterns of shared phylogenetic diversity and physiological ecology, while providing many targets for enrichment and cultivation of novel and endemic taxa. Video Abstract.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily St John
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
3
|
Wang F, Zhang Y, Jing H, Liu H. Spatial variation and metabolic diversity of microbial communities in the surface sediments of the Mariana Trench. Front Microbiol 2022; 13:1051999. [PMID: 36545198 PMCID: PMC9760864 DOI: 10.3389/fmicb.2022.1051999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Mariana Trench represents the deepest and one of least explored biosphere on Earth, and its carbon sources include euphotic sinking, lateral transportation and diffusion from underlying crust, etc. By far the spatial variation of microbial community with associated organic carbon degradation potential in the surface sediments of the Mariana Trench were still largely unknown. Based on the high-throughput 16S rRNA amplicon sequencing, significantly different microbial community structure was overserved between the shallow (<10,000 m) and deep stations (>10,000 m), which could be explained by spatial variation of Chloroflexi, Proteobacteria and Crenarchaeota, with sampling depth and total organic carbon (TOC) content as the environmental driving forces. During the 109-day incubation with Biolog EcoPlate™ microplate, polymers and carbohydrates were preferentially used, followed by amino acids and carboxylic acids, and microbial metabolic diversity was significantly different between the shallow and deep stations. The metabolic diversity of microorganisms at most shallow stations was significantly lower than that at deep stations. This could potentially be attributed the metabolic capabilities of different microbial groups with varied ecological niches, and reflected the initial preference of carbon source by the nature microbes as well. Our study obtained a rough assessment of physiological and taxonomic characteristics of the trench sediment microbial community with polyphasic approaches. Distinct microbial structure and potential carbon metabolic functions in different sampling depths might led to the differentiation of ecological niches, which enable various microorganisms to make full use of the limited resources in the deep sea, and provided a research basis for further exploration of the carbon cycle in different deep-sea regions.
Collapse
Affiliation(s)
- Fangzhou Wang
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongmei Jing,
| | - Hao Liu
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
4
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
5
|
Wang Y, Wang C. Comparative study on archaeal diversity in the sediments of two urban landscape water bodies. PLoS One 2020; 15:e0229097. [PMID: 32069312 PMCID: PMC7028264 DOI: 10.1371/journal.pone.0229097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
Urban lake sediment plays a very important role in waterbody ecosystems. It is the basis of nutrient cycling and material exchange between microorganisms and lake ecosystems. In this study, Illumina high-throughput sequencing technology was employed to detect the structure and species richness of Archaea in anoxic sediments of urban waterbodies (Aohai Lake and Kunming Lake) in Beijing, and the environmental factors (pH level, organic matter, available nitrogen and total nitrogen) affecting the structure and succession of archaeal communities were also investigated. The results showed that there were 13 classified archaeal phyla, and the most frequent archaeal species in the lakes were Bathyarchaeota (MCG), Euryarchaeota, Thaumarchaeota, Aenigmarchaeota, Hadesarchaea, Lokiarchaeota, and Parvarchaeota. The top ten most abundant genera in the two lakes were significantly associated with at least one environmental factor. The results of this study enrich the understanding of microbial diversity in urban eutrophic lake sediments in northern China.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Water Resources & Civil Engineering, China Agricultural University, Haidian, Beijing, China
- * E-mail:
| | - Chaonan Wang
- College of Water Resources & Civil Engineering, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
6
|
Varliero G, Bienhold C, Schmid F, Boetius A, Molari M. Microbial Diversity and Connectivity in Deep-Sea Sediments of the South Atlantic Polar Front. Front Microbiol 2019; 10:665. [PMID: 31024475 PMCID: PMC6465420 DOI: 10.3389/fmicb.2019.00665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Ultraslow spreading ridges account for one-third of the global mid-ocean ridges. Their impact on the diversity and connectivity of benthic deep-sea microbial assemblages is poorly understood, especially for hydrothermally inactive, magma-starved ridges. We investigated bacterial and archaeal diversity in sediments collected from an amagmatic segment (10°–17°E) of the Southwest Indian Ridge (SWIR) and in the adjacent northern and southern abyssal zones of similar water depths within one biogeochemical province of the Indian Ocean. Microbial diversity was determined by 16S ribosomal RNA (rRNA) gene sequencing. Our results show significant differences in microbial communities between stations outside and inside the SWIR, which were mostly explained by environmental selection. Community similarity correlated significantly with differences in chlorophyll a content and with the presence of upward porewater fluxes carrying reduced compounds (e.g., ammonia and sulfide), suggesting that trophic resource availability is a main driver for changes in microbial community composition. At the stations in the SWIR axial valley (3,655–4,448 m water depth), microbial communities were enriched in bacterial and archaeal taxa common in organic matter-rich subsurface sediments (e.g., SEEP-SRB1, Dehalococcoida, Atribacteria, and Woesearchaeota) and chemosynthetic environments (mainly Helicobacteraceae). The abyssal stations outside the SWIR communities (3,760–4,869 m water depth) were dominated by OM1 clade, JTB255, Planctomycetaceae, and Rhodospirillaceae. We conclude that ultraslow spreading ridges create a unique environmental setting in sedimented segments without distinct hydrothermal activity, and play an important role in shaping microbial communities and promoting diversity, but also in connectivity among deep-sea habitats.
Collapse
Affiliation(s)
- Gilda Varliero
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Christina Bienhold
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Florian Schmid
- Helmholtz Centre for Ocean Research Kiel, GEOMAR, Kiel, Germany.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
7
|
Hydrothermal chimneys host habitat-specific microbial communities: analogues for studying the possible impact of mining seafloor massive sulfide deposits. Sci Rep 2018; 8:10386. [PMID: 29991752 PMCID: PMC6039533 DOI: 10.1038/s41598-018-28613-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
To assess the risk that mining of seafloor massive sulfides (SMS) from extinct hydrothermal vent environments has for changing the ecosystem irreversibly, we sampled SMS analogous habitats from the Kairei and the Pelagia vent fields along the Indian Ridge. In total 19.8 million 16S rRNA tags from 14 different sites were analyzed and the microbial communities were compared with each other and with publicly available data sets from other marine environments. The chimneys appear to provide habitats for microorganisms that are not found or only detectable in very low numbers in other marine habitats. The chimneys also host rare organisms and may function as a vital part of the ocean’s seed bank. Many of the reads from active and inactive chimney samples were clustered into OTUs, with low or no resemblance to known species. Since we are unaware of the chemical reactions catalyzed by these unknown organisms, the impact of this diversity loss and bio-geo-coupling is hard to predict. Given that chimney structures can be considered SMS analogues, removal of sulfide deposits from the seafloor in the Kairei and Pelagia fields will most likely alter microbial compositions and affect element cycling in the benthic regions and probably beyond.
Collapse
|
8
|
Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160829. [PMID: 28484604 PMCID: PMC5414241 DOI: 10.1098/rsos.160829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter, Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.
Collapse
Affiliation(s)
- Anni Djurhuus
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
- e-mail:
| | - Svein-Ole Mikalsen
- Department of Science and Technology, University of the Faroe Islands, Noatun 3, Torshavn, Faroe Islands
| | - Helge-Ansgar Giebel
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, , Germany
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
| |
Collapse
|
9
|
Mino S, Nakagawa S, Makita H, Toki T, Miyazaki J, Sievert SM, Polz MF, Inagaki F, Godfroy A, Kato S, Watanabe H, Nunoura T, Nakamura K, Imachi H, Watsuji TO, Kojima S, Takai K, Sawabe T. Endemicity of the cosmopolitan mesophilic chemolithoautotroph Sulfurimonas at deep-sea hydrothermal vents. ISME JOURNAL 2017; 11:909-919. [PMID: 28045457 DOI: 10.1038/ismej.2016.178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 11/09/2022]
Abstract
Rich animal and microbial communities have been found at deep-sea hydrothermal vents. Although the biogeography of vent macrofauna is well understood, the corresponding knowledge about vent microbial biogeography is lacking. Here, we apply the multilocus sequence analysis (MLSA) to assess the genetic variation of 109 Sulfurimonas strains with ⩾98% 16S rRNA gene sequence similarity, which were isolated from four different geographical regions (Okinawa Trough (OT), Mariana Volcanic Arc and Trough (MVAT), Central Indian Ridge (CIR) and Mid-Atlantic Ridge (MAR)). Sequence typing based on 11 protein-coding genes revealed high genetic variation, including some allele types that are widespread within regions, resulting in 102 nucleotide sequence types (STs). This genetic variation was predominantly due to mutation rather than recombination. Phylogenetic analysis of the 11 concatenated genes showed a clear geographical isolation corresponding to the hydrothermal regions they originated from, suggesting limited dispersal. Genetic differentiation among Sulfurimonas populations was primarily influenced by geographical distance rather than gas composition of vent fluid or habitat, although in situ environmental conditions of each microhabitat could not be examined. Nevertheless, Sulfurimonas may possess a higher dispersal capability compared with deep-sea hydrothermal vent thermophiles. This is the first report on MLSA of deep-sea hydrothermal vent Epsilonproteobacteria, which is indicative of allopatric speciation.
Collapse
Affiliation(s)
- Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroko Makita
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tomohiro Toki
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Japan
| | - Junichi Miyazaki
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Stefan M Sievert
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Japan.,Research and Development Center for Ocean Drilling Science (ODS), JAMSTEC, Yokohama, Japan
| | - Anne Godfroy
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| | - Hiromi Watanabe
- Department of Marine Biodiversity Research, JAMSTEC, Yokosuka, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, JAMSTEC, Yokosuka, Japan
| | - Koichi Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tomo-O Watsuji
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeaki Kojima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Ken Takai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
10
|
Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge. Sci Rep 2016; 6:25982. [PMID: 27169490 PMCID: PMC4864381 DOI: 10.1038/srep25982] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/25/2016] [Indexed: 02/01/2023] Open
Abstract
Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.
Collapse
|
11
|
Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microbiol 2016; 81:1426-41. [PMID: 25527539 DOI: 10.1128/aem.03588-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zonation of anaerobic methane-cycling Archaea in hydrothermal sediment of Guaymas Basin was studied by general primerpairs (mcrI, ME1/ME2, mcrIRD) targeting the alpha subunit of methyl coenzyme M reductase gene (mcrA) and by new group specific mcrA and 16S rRNA gene primer pairs. The mcrIRD primer pair outperformed the other general mcrA primer pairs indetection sensitivity and phylogenetic coverage. Methanotrophic ANME-1 Archaea were the only group detected with group specific primers only. The detection of 14 mcrA lineages surpasses the diversity previously found in this location. Most phylotypes have high sequence similarities to hydrogenotrophs, methylotrophs, and anaerobic methanotrophs previously detected at Guaymas Basin or at hydrothermal vents, cold seeps, and oil reservoirs worldwide. Additionally, five mcrA phylotypes belonging to newly defined lineages are detected. Two of these belong to deeply branching new orders, while the others are new species or genera of Methanopyraceae and Methermicoccaceae. Downcore diversity decreases from all groups detected in the upper 6 cm(2 to 40 °C, sulfate measurable to 4 cm) to only two groups below 6 cm (>40 °C). Despite the presence of hyperthermophilic genera (Methanopyrus, Methanocaldococcus) in cooler surface strata, no genes were detected below 10 cm (>60 °C). While mcrAbased and 16S rRNA gene-based community compositions are generally congruent, the deeply branching mcrA cannot be assigned to specific 16S rRNA gene lineages. Our study indicates that even among well-studied metabolic groups and in previously characterized model environments, major evolutionary branches are overlooked. Detecting these groups by improved molecular biological methods is a crucial first step toward understanding their roles in nature.
Collapse
|
12
|
Zhang J, Sun QL, Zeng ZG, Chen S, Sun L. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 2015. [DOI: 10.1016/j.micres.2015.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Handling temperature bursts reaching 464°C: different microbial strategies in the sisters peak hydrothermal chimney. Appl Environ Microbiol 2015; 80:4585-98. [PMID: 24837379 DOI: 10.1128/aem.01460-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The active venting Sisters Peak (SP) chimney on the Mid-Atlantic Ridge holds the current temperature record for the hottest ever measured hydrothermal fluids (400°C, accompanied by sudden temperature bursts reaching 464°C). Given the unprecedented temperature regime, we investigated the biome of this chimney with a focus on special microbial adaptations for thermal tolerance. The SP metagenome reveals considerable differences in the taxonomic composition from those of other hydrothermal vent and subsurface samples; these could be better explained by temperature than by other available abiotic parameters. The most common species to which SP genes were assigned were thermophilic Aciduliprofundum sp. strain MAR08-339 (11.8%), Hippea maritima (3.8%), Caldisericum exile (1.5%), and Caminibacter mediatlanticus (1.4%) as well as to the mesophilic Niastella koreensis (2.8%). A statistical analysis of associations between taxonomic and functional gene assignments revealed specific overrepresented functional categories: for Aciduliprofundum, protein biosynthesis, nucleotide metabolism, and energy metabolism genes; for Hippea and Caminibacter, cell motility and/or DNA replication and repair system genes; and for Niastella, cell wall and membrane biogenesis genes. Cultured representatives of these organisms inhabit different thermal niches; i.e., Aciduliprofundum has an optimal growth temperature of 70°C, Hippea and Caminibacter have optimal growth temperatures around 55°C, and Niastella grows between 10 and 37°C. Therefore, we posit that the different enrichment profiles of functional categories reflect distinct microbial strategies to deal with the different impacts of the local sudden temperature bursts in disparate regions of the chimney.
Collapse
|
14
|
Ferrera I, Arístegui J, González JM, Montero MF, Fraile-Nuez E, Gasol JM. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands). PLoS One 2015; 10:e0118136. [PMID: 25671714 PMCID: PMC4324844 DOI: 10.1371/journal.pone.0118136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/08/2015] [Indexed: 11/24/2022] Open
Abstract
The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed.
Collapse
Affiliation(s)
- Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
- * E-mail:
| | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - José M. González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - María F. Montero
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Eugenio Fraile-Nuez
- Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Santa Cruz de Tenerife, Spain
| | - Josep M. Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| |
Collapse
|
15
|
Metcalf JA, Funkhouser-Jones LJ, Brileya K, Reysenbach AL, Bordenstein SR. Antibacterial gene transfer across the tree of life. eLife 2014; 3. [PMID: 25422936 PMCID: PMC4241558 DOI: 10.7554/elife.04266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/16/2014] [Indexed: 11/13/2022] Open
Abstract
Though horizontal gene transfer (HGT) is widespread, genes and taxa experience biased rates of transferability. Curiously, independent transmission of homologous DNA to archaea, bacteria, eukaryotes, and viruses is extremely rare and often defies ecological and functional explanations. Here, we demonstrate that a bacterial lysozyme family integrated independently in all domains of life across diverse environments, generating the only glycosyl hydrolase 25 muramidases in plants and archaea. During coculture of a hydrothermal vent archaeon with a bacterial competitor, muramidase transcription is upregulated. Moreover, recombinant lysozyme exhibits broad-spectrum antibacterial action in a dose-dependent manner. Similar to bacterial transfer of antibiotic resistance genes, transfer of a potent antibacterial gene across the universal tree seemingly bestows a niche-transcending adaptation that trumps the barriers against parallel HGT to all domains. The discoveries also comprise the first characterization of an antibacterial gene in archaea and support the pursuit of antibiotics in this underexplored group. DOI:http://dx.doi.org/10.7554/eLife.04266.001 Living things inherit most of their genetic material from their parents, so genes tend to be passed on from one generation to the next—from ancestors to descendants. Sometimes, however, DNA is transferred from one organism to another by other means. These events, collectively called horizontal gene transfer, are fairly common in nature; genes have been passed between different species as well as between different groups of organisms. For example, genes that confer resistance to antibacterial drugs have transferred from one species of bacteria to another, and other genes have also ‘jumped’ from bacteria to plants or animals. Now Metcalf et al. have studied a gene that first arose in bacteria and that encodes an enzyme called a lysozyme. This enzyme breaks down the outer casing of a bacterial cell: a step that is required for a bacterium to reproduce and divide in two. When Metcalf et al. searched for relatives of the lysozyme gene, they found copies in many other species of bacteria and revealed that this gene has been repeatedly transferred between different bacteria. Members of the lysozyme gene family have also ‘jumped out’ of bacteria and into other organisms at least four times. Metcalf et al. found related lysozyme genes in a plant, an insect, many species of fungi, and a single-celled microbe (called an archaeon) that lives at hot, deep-sea vents. A gene family being spread this widely across the tree of life has not been seen before. Nevertheless, as DNA is a common biological language to all living things, it is likely that all the different species that have received a lysozyme gene might use it for similar purposes. Metcalf et al. reveal that the lysozyme could be being used as an antibacterial molecule. The archaeon lysozyme can kill a broad range of bacteria; and when the gene was transferred into Escherichia coli bacteria, only the bacteria that mutated the lysozyme gene to render it useless were able to survive. Metcalf et al. also revealed that the archaeon microbe produces more of the enzyme if bacteria are present, which allows it to outcompete these bacteria. These findings suggest that there may be a number of horizontally transferred genes that have antibacterial activity against a wide range of bacteria. Searching for these genes—particularly in the largely underexplored group of archaea—might reveal new sources for antibiotic drugs to treat bacterial infections. DOI:http://dx.doi.org/10.7554/eLife.04266.002
Collapse
Affiliation(s)
- Jason A Metcalf
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | | | - Kristen Brileya
- Department of Biology, Portland State University, Portland, United States
| | | | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| |
Collapse
|
16
|
Ferrera I, Banta AB, Reysenbach AL. Spatial patterns of Aquificales in deep-sea vents along the Eastern Lau Spreading Center (SW Pacific). Syst Appl Microbiol 2014; 37:442-8. [DOI: 10.1016/j.syapm.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
|
17
|
Callac N, Rommevaux-Jestin C, Rouxel O, Lesongeur F, Liorzou C, Bollinger C, Ferrant A, Godfroy A. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin. Front Microbiol 2013; 4:250. [PMID: 23986754 PMCID: PMC3753459 DOI: 10.3389/fmicb.2013.00250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/07/2013] [Indexed: 11/13/2022] Open
Abstract
Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS ("Autonomous in situ Instrumented Colonization System") were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions.
Collapse
Affiliation(s)
- Nolwenn Callac
- Laboratoire de Microbiologie des Environnements Extrêmes UMR 6197, Université de Bretagne Occidentale, UEB, IUEM Plouzané, France ; Laboratoire de Microbiologie des Environnements Extrêmes UMR 6197, Ifremer Plouzané, France ; Laboratoire de Microbiologie des Environnements Extrêmes UMR 6197, CNRS Plouzané, France ; Domaines Océaniques UMR6538, IUEM, Université de Bretagne Occidentale Plouzané, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Price RE, Lesniewski R, Nitzsche KS, Meyerdierks A, Saltikov C, Pichler T, Amend JP. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front Microbiol 2013; 4:158. [PMID: 23847597 PMCID: PMC3705188 DOI: 10.3389/fmicb.2013.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/30/2013] [Indexed: 11/13/2022] Open
Abstract
Phase separation is a ubiquitous process in seafloor hydrothermal vents, creating a large range of salinities. Toxic elements (e.g., arsenic) partition into the vapor phase, and thus can be enriched in both high and low salinity fluids. However, investigations of microbial diversity at sites associated with phase separation are rare. We evaluated prokaryotic diversity in arsenic-rich shallow-sea vents off Milos Island (Greece) by comparative analysis of 16S rRNA clone sequences from two vent sites with similar pH and temperature but marked differences in salinity. Clone sequences were also obtained for aioA-like functional genes (AFGs). Bacteria in the surface sediments (0–1.5 cm) at the high salinity site consisted of mainly Epsilonproteobacteria (Arcobacter sp.), which transitioned to almost exclusively Firmicutes (Bacillus sp.) at ~10 cm depth. However, the low salinity site consisted of Bacteroidetes (Flavobacteria) in the surface and Epsilonproteobacteria (Arcobacter sp.) at ~10 cm depth. Archaea in the high salinity surface sediments were dominated by the orders Archaeoglobales and Thermococcales, transitioning to Thermoproteales and Desulfurococcales (Staphylothermus sp.) in the deeper sediments. In contrast, the low salinity site was dominated by Thermoplasmatales in the surface and Thermoproteales at depth. Similarities in gas and redox chemistry suggest that salinity and/or arsenic concentrations may select for microbial communities that can tolerate these parameters. Many of the archaeal 16S rRNA sequences contained inserts, possibly introns, including members of the Euryarchaeota. Clones containing AFGs affiliated with either Alpha- or Betaproteobacteria, although most were only distantly related to published representatives. Most clones (89%) originated from the deeper layer of the low salinity, highest arsenic site. This is the only sample with overlap in 16S rRNA data, suggesting arsenotrophy as an important metabolism in similar environments.
Collapse
Affiliation(s)
- Roy E Price
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol 2013; 195:3834-44. [PMID: 23794616 DOI: 10.1128/jb.00412-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRISPR-Cas grows due to the increase of the host and, accordingly, the virus population size. Above a threshold value of total viral diversity, which is proportional to the viral mutation rate and population size, the CRISPR-Cas system becomes ineffective and is lost due to the associated fitness cost. Our previous modeling study has suggested that the ubiquity of CRISPR-Cas in hyperthermophiles, which contrasts its comparative low prevalence in mesophiles, is due to lower rates of mutation fixation in thermal habitats. The present findings offer a complementary, simpler perspective on this contrast through the larger population sizes of mesophiles compared to hyperthermophiles, because of which CRISPR-Cas can become ineffective in mesophiles. The efficacy of CRISPR-Cas sharply increases with the number of proto-spacers per viral genome, potentially explaining the low information content of the proto-spacer-associated motif (PAM) that is required for spacer acquisition by CRISPR-Cas because a higher specificity would restrict the number of spacers available to CRISPR-Cas, thus hampering immunity. The very existence of the PAM might reflect the tradeoff between the requirement of diverse spacers for efficient immunity and avoidance of autoimmunity.
Collapse
|
20
|
Mino S, Makita H, Toki T, Miyazaki J, Kato S, Watanabe H, Imachi H, Watsuji TO, Nunoura T, Kojima S, Sawabe T, Takai K, Nakagawa S. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific. Front Microbiol 2013; 4:107. [PMID: 23630523 PMCID: PMC3635849 DOI: 10.3389/fmicb.2013.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/13/2013] [Indexed: 11/30/2022] Open
Abstract
Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA) scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 Persephonella hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough (SNT). Although the strains share >98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types (ST), indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.
Collapse
Affiliation(s)
- Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|