1
|
Gebrie A. Transposable elements as essential elements in the control of gene expression. Mob DNA 2023; 14:9. [PMID: 37596675 PMCID: PMC10439571 DOI: 10.1186/s13100-023-00297-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Interspersed repetitions called transposable elements (TEs), commonly referred to as mobile elements, make up a significant portion of the genomes of higher animals. TEs contribute in controlling the expression of genes locally and even far away at the transcriptional and post-transcriptional levels, which is one of their significant functional effects on gene function and genome evolution. There are different mechanisms through which TEs control the expression of genes. First, TEs offer cis-regulatory regions in the genome with their inherent regulatory features for their own expression, making them potential factors for controlling the expression of the host genes. Promoter and enhancer elements contain cis-regulatory sites generated from TE, which function as binding sites for a variety of trans-acting factors. Second, a significant portion of miRNAs and long non-coding RNAs (lncRNAs) have been shown to have TEs that encode for regulatory RNAs, revealing the TE origin of these RNAs. Furthermore, it was shown that TE sequences are essential for these RNAs' regulatory actions, which include binding to the target mRNA. By being a member of cis-regulatory and regulatory RNA sequences, TEs therefore play essential regulatory roles. Additionally, it has been suggested that TE-derived regulatory RNAs and cis-regulatory regions both contribute to the evolutionary novelty of gene regulation. Additionally, these regulatory systems arising from TE frequently have tissue-specific functions. The objective of this review is to discuss TE-mediated gene regulation, with a particular emphasis on the processes, contributions of various TE types, differential roles of various tissue types, based mostly on recent studies on humans.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia.
| |
Collapse
|
2
|
Okudaira N, Ishizaka Y, Tamamori-Adachi M. Resveratrol blocks retrotransposition of LINE-1 through PPAR α and sirtuin-6. Sci Rep 2022; 12:7772. [PMID: 35546166 PMCID: PMC9095727 DOI: 10.1038/s41598-022-11761-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
The retroelement long interspersed element-1 (LINE-1 or L1) comprises about 17% of the human genome. L1 retrotransposition is known to cause genomic instability and related disorders, and resveratrol suppresses this retrotransposition; however, the underlying mechanism is still not elucidated. Recent observations showed that low-molecular-weight compounds might induce L1 retrotransposition through unknown mechanisms. This study aimed to determine polyphenol resveratrol (RV)'s effect on L1-RTP (retrotransposition) in somatic cells. Surprisingly, RV completely blocked L1-RTP. Experiments using the PPARα inhibitor GW6471 or siRNA-mediated PPARα depletion showed that RV-mediated L1-RTP's inhibition depended on peroxisome proliferator-activated receptor α (PPARα). We demonstrated that RV inhibits p38 and cAMP response element binding protein phosphorylation, which are involved in MAPK signaling, and the L1-ORF1 protein's chromatin recruitment. Furthermore, RV increased the expression of sirtuin-6 (SIRT6), which inhibited the activation of L1. The sirtuins family, SIRT1, SIRT6, and SIRT7, but not SIRT3, are involved in RV-mediated inhibition of L1-RTP. Overall, our findings suggest that RV directly modulates PPARα-mediated L1-RTP in somatic cells and that MAPK signaling interacts with SIRT6 closely and may play a role in preventing human diseases such as cancer.
Collapse
Affiliation(s)
- Noriyuki Okudaira
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
3
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Drongitis D, Aniello F, Fucci L, Donizetti A. Roles of Transposable Elements in the Different Layers of Gene Expression Regulation. Int J Mol Sci 2019; 20:ijms20225755. [PMID: 31731828 PMCID: PMC6888579 DOI: 10.3390/ijms20225755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/03/2023] Open
Abstract
The biology of transposable elements (TEs) is a fascinating and complex field of investigation. TEs represent a substantial fraction of many eukaryotic genomes and can influence many aspects of DNA function that range from the evolution of genetic information to duplication, stability, and gene expression. Their ability to move inside the genome has been largely recognized as a double-edged sword, as both useful and deleterious effects can result. A fundamental role has been played by the evolution of the molecular processes needed to properly control the expression of TEs. Today, we are far removed from the original reductive vision of TEs as “junk DNA”, and are more convinced that TEs represent an essential element in the regulation of gene expression. In this review, we summarize some of the more recent findings, mainly in the animal kingdom, concerning the active roles that TEs play at every level of gene expression regulation, including chromatin modification, splicing, and protein translation.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy;
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Laura Fucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
- Correspondence:
| |
Collapse
|
5
|
Abstract
The third Japanese meeting entitled “Biological Function and Evolution through Interactions between Hosts and Transposable Elements (TEs)” was held on 5–6 September 2016 at National Institute of Genetics (NIG), Mishima, Japan. Supported by NIG, the goal of the meeting was to bring together researchers who study diverse biological phenomena such as schizophrenia, carcinogenesis, cellular reprograming, skin function, placental formation, plant mutagenesis and epigenetics, and small RNA-mediated heterochromatinization, where TEs are involved in various ways. The meeting included 13 invited speakers. Here we present highlights of these invited talks.
Collapse
|
6
|
Cook PR, Tabor GT. Deciphering fact from artifact when using reporter assays to investigate the roles of host factors on L1 retrotransposition. Mob DNA 2016; 7:23. [PMID: 27895722 PMCID: PMC5120415 DOI: 10.1186/s13100-016-0079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Long INterspersed Element-1 (L1, LINE-1) is the only autonomous mobile DNA element in humans and has generated as much as half of the genome. Due to increasing clinical interest in the roles of L1 in cancer, embryogenesis and neuronal development, it has become a priority to understand L1-host interactions and identify host factors required for its activity. Apropos to this, we recently reported that L1 retrotransposition in HeLa cells requires phosphorylation of the L1 protein ORF1p at motifs targeted by host cell proline-directed protein kinases (PDPKs), which include the family of mitogen-activated protein kinases (MAPKs). Using two engineered L1 reporter assays, we continued our investigation into the roles of MAPKs in L1 activity. RESULTS We found that the MAPK p38δ phosphorylated ORF1p on three of its four PDPK motifs required for L1 activity. In addition, we found that a constitutively active p38δ mutant appeared to promote L1 retrotransposition in HeLa cells. However, despite the consistency of these findings with our earlier work, we identified some technical concerns regarding the experimental methodology. Specifically, we found that exogenous expression of p38δ appeared to affect at least one heterologous promoter in an engineered L1 reporter, as well as generate opposing effects on two different reporters. We also show that two commercially available non-targeting control (NTC) siRNAs elicit drastically different effects on the apparent retrotransposition reported by both L1 assays, which raises concerns about the use of NTCs as normalizing controls. CONCLUSIONS Engineered L1 reporter assays have been invaluable for determining the functions and critical residues of L1 open reading frames, as well as elucidating many aspects of L1 replication. However, our results suggest that caution is required when interpreting data obtained from L1 reporters used in conjunction with exogenous gene expression or siRNA.
Collapse
Affiliation(s)
- Pamela R. Cook
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892 USA
| | - G. Travis Tabor
- National Institute of Child Health and Human Development, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892 USA
| |
Collapse
|
7
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
8
|
Del Re B, Giorgi G. Cell-host, LINE and environment: Three players in search of a balance. Mob Genet Elements 2014; 3:e24040. [PMID: 23734298 PMCID: PMC3655780 DOI: 10.4161/mge.24040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/19/2022] Open
Abstract
Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells. In this commentary we discuss the interaction between environment and L1 activity in the light of the new emerging paradigm of host-LINE relationship.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology; University of Bologna; Bologna, Italy
| | | |
Collapse
|
9
|
Okudaira N, Ishizaka Y, Nishio H. Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine. J Biol Chem 2014; 289:25476-85. [PMID: 25053411 PMCID: PMC4162154 DOI: 10.1074/jbc.m114.559419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long interspersed element 1 (L1) is a retroelement constituting ∼17% of the human genome. A single human cell has 80–100 copies of L1 capable of retrotransposition (L1-RTP), ∼10% of which are “hot L1” copies, meaning they are primed for “jumping” within the genome. Recent studies demonstrated induction of L1 activity by drugs of abuse or low molecular weight compounds, but little is known about the underlying mechanism. The aim of this study was to identify the mechanism and effects of methamphetamine (METH) and cocaine on L1-RTP. Our results revealed that METH and cocaine induced L1-RTP in neuronal cell lines. This effect was found to be reverse transcriptase-dependent. However, METH and cocaine did not induce double-strand breaks. RNA interference experiments combined with add-back of siRNA-resistant cDNAs revealed that the induction of L1-RTP by METH or cocaine depends on the activation of cAMP response element-binding protein (CREB). METH or cocaine recruited the L1-encoded open reading frame 1 (ORF1) to chromatin in a CREB-dependent manner. These data suggest that the cellular cascades underlying METH- and cocaine-induced L1-RTP are different from those behind L1-RTP triggered by DNA damage; CREB is involved in drug-induced L1-RTP. L1-RTP caused by drugs of abuse is a novel type of genomic instability, and analysis of this phenomenon might be a novel approach to studying substance-use disorders.
Collapse
Affiliation(s)
- Noriyuki Okudaira
- From the Department of Legal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan and
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hajime Nishio
- From the Department of Legal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan and
| |
Collapse
|
10
|
Karimi A, Madjd Z, Habibi L, Akrami SM. Evaluating the extent of LINE-1 mobility following exposure to heavy metals in HepG2 cells. Biol Trace Elem Res 2014; 160:143-51. [PMID: 24894828 DOI: 10.1007/s12011-014-0015-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022]
Abstract
The long interspersed elements-1 (LINE1 or L1 retrotransposon) constitute 17% of the human genome and retain mobility properties within the genome. At present, 80-100 human L1 elements are thought to be active in the genome. The mobilization of these active elements may be influenced upon exposure to the heavy metals. In the present study, we evaluated the association of aluminum, lead, and copper exposure with L1 retrotransposition in human hepatocellular carcinoma (HepG2) cell line. An in vitro retrotransposition assay using an enhanced green fluorescent protein (EGFP)-tagged L1RP cassette was established to track EGFP shining as the mark of retrotransposition. Following determination of noncytotoxic concentrations of these metals, pL1RP-EGFP-transfected HepG2 cells were subjected to long-term treatment. Flow cytometry analysis of cells treated with various concentrations of these metals along with quantitative real-time PCR was used to quantify L1 retrotransposition frequencies. Aluminum significantly increased L1 retrotransposition frequency, while no significant association was found concerning lead exposure and L1 retrotransposition. Copper treatment downregulated L1 retrotransposition as a result of EGFP-tagged L1RP expression. Our findings suggest that aluminum might have the potential to cause genomic instability by the enhancement of L1 mobilization. Thus, the risk of induced L1 retrotransposition should be considered during drug safety evaluation and risk assessments of exposure to toxic environmental agents. Further studies are needed for a more robust assay to evaluate any associations between long-term lead exposure and L1 mobility in cell culture assay.
Collapse
Affiliation(s)
- Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine (FATiM), Iran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
11
|
Karimi A, Madjd Z, Habibi L, Akrami SM. Exposure of hepatocellular carcinoma cells to low-level As₂O₃ causes an extra toxicity pathway via L1 retrotransposition induction. Toxicol Lett 2014; 229:111-7. [PMID: 24960058 DOI: 10.1016/j.toxlet.2014.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/17/2022]
Abstract
Various mechanisms have been proposed for toxicity and carcinogenesis pattern of arsenic, a naturally occurring metalloid. The extent to which the long interspersed element-1 (LINE-1) retrotransposon, an ubiquitous retroelement with autonomous mobility, can be influenced upon exposure to low-level arsenic remains to be elucidated. The aim of this study was to evaluate the possible effect of low-level As2O3 on L1 retrotransposition alteration in human hepatocellular carcinoma cells (HepG2). L1 retrotransposition in HepG2 cells was performed by the in vitro retrotransposition assay using an EGFP-tagged L1RP. Following determination of non-cytotoxic concentrations of arsenic by a MTT assay, the cells were transfected with pL1RP-EGFP and then exposed to 0.25, 0.50 and 0.75 μM of As2O3. The amount of EGFP and its copy number in retrotransposed cells were evaluated by FACS and qPCR analysis in treated vs. control cells, respectively. Significant increase in retrotransposition frequency was found after 12 days exposure to 0.50 and 0.75 μM of As2O3 by FACS analysis (P<0.05). Obtained results were further confirmed by real time PCR, which showed significant induction of retrotransposition in all mentioned concentrations. Our findings indicate that low-level long-term As2O3 exposure may pave activation of L1 retrotransposon.
Collapse
Affiliation(s)
- Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine (FATiM), Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine (FATiM), Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Laleh Habibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Mourier T, Nielsen LP, Hansen AJ, Willerslev E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front Genet 2014; 5:156. [PMID: 24910642 PMCID: PMC4038923 DOI: 10.3389/fgene.2014.00156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/11/2014] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted toward certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Lars P Nielsen
- Department of Virology and the Danish National Biobank, Statens Serum Institut Copenhagen, Denmark
| | - Anders J Hansen
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Eske Willerslev
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
13
|
Koito A, Ishizaka Y. Retroviruses, retroelements and their restrictions. Front Microbiol 2013; 4:197. [PMID: 23874330 PMCID: PMC3710956 DOI: 10.3389/fmicb.2013.00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Atsushi Koito
- Department of Retrovirology and Self-Defense, Kumamoto University Kumamoto, Japan
| | | |
Collapse
|