1
|
Kuevda AV, Espinoza Cangahuala MK, Hildner R, Jansen TLC, Pshenichnikov MS. Linear Dichroism Microscopy Resolves Competing Structural Models of a Synthetic Light-Harvesting Complex. J Am Chem Soc 2025; 147:6171-6180. [PMID: 39904516 DOI: 10.1021/jacs.4c17708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The initial stages of photosynthesis in light-harvesting antennae, driven by excitonic energy transport, have inspired the design of artificial light-harvesting complexes. Double-walled nanotubes (DWNTs) formed from the cyanine dye C8S3 provide a robust, self-assembled system that mimics natural chlorosomes in both structure and optical properties. Two competing molecular packing models─bricklayer (BL) and herringbone (HB)─have been proposed to explain the structural and optical characteristics of these DWNTs. This study resolves the debate by combining theoretical analysis with advanced polarization-resolved wide-field photoluminescence microscopy. Quantum-classical simulations reveal reduced linear dichroism (LDr) as a decisive parameter for distinguishing between the models. Experimental measurements of single DWNTs yielded LDr values as high as 0.93, strongly favoring the BL model. The BL model's unique excitonic patterns, dominated by negative couplings among individual chromophores, generate superradiant exciton states with transition dipoles preferentially aligned along the nanotube axis. In contrast, the HB model's mixed positive and negative couplings produce destructive interference, leading to a weaker alignment of transition dipoles. Our approach deepens the understanding of the structure-property relationships in self-assembled systems and demonstrates the potential of slip-stacking engineering to fine-tune excitonic properties for artificial light-harvesting applications.
Collapse
Affiliation(s)
- Alexey V Kuevda
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Mónica K Espinoza Cangahuala
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Richard Hildner
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Graça AT, Lihavainen J, Hussein R, Schröder WP. Obscurity of chlorophyll tails - Is chlorophyll with farnesyl tail incorporated into PSII complexes? PHYSIOLOGIA PLANTARUM 2024; 176:e14428. [PMID: 38981693 DOI: 10.1111/ppl.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Chlorophyll is essential in photosynthesis, converting sunlight into chemical energy in plants, algae, and certain bacteria. Its structure, featuring a porphyrin ring enclosing a central magnesium ion, varies in forms like chlorophyll a, b, c, d, and f, allowing light absorption at a broader spectrum. With a 20-carbon phytyl tail (except for chlorophyll c), chlorophyll is anchored to proteins. Previous findings suggested the presence of chlorophyll with a modified farnesyl tail in thermophilic cyanobacteria Thermosynechoccocus vestitus. In our Arabidopsis thaliana PSII cryo-EM map, specific chlorophylls showed incomplete phytyl tails, suggesting potential farnesyl modifications. However, further high-resolution mass spectrometry (HRMS) analysis in A. thaliana and T. vestitus did not confirm the presence of any farnesyl tails. Instead, we propose the truncated tails in PSII models may result from binding pocket flexibility rather than actual modifications.
Collapse
Affiliation(s)
- André T Graça
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jenna Lihavainen
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, Berlin, Germany
| | - Wolfgang P Schröder
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Proctor MS, Sutherland GA, Canniffe DP, Hitchcock A. The terminal enzymes of (bacterio)chlorophyll biosynthesis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211903. [PMID: 35573041 PMCID: PMC9066304 DOI: 10.1098/rsos.211903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
(Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs.
Collapse
Affiliation(s)
- Matthew S. Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - George A. Sutherland
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Daniel P. Canniffe
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Saini MK, Sebastian A, Shirotori Y, Soulier NT, Garcia Costas AM, Drautz-Moses DI, Schuster SC, Albert I, Haruta S, Hanada S, Thiel V, Tank M, Bryant DA. Genomic and Phenotypic Characterization of Chloracidobacterium Isolates Provides Evidence for Multiple Species. Front Microbiol 2021; 12:704168. [PMID: 34220789 PMCID: PMC8245765 DOI: 10.3389/fmicb.2021.704168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Chloracidobacterium is the first and until now the sole genus in the phylum Acidobacteriota (formerly Acidobacteria) whose members perform chlorophyll-dependent phototrophy (i.e., chlorophototrophy). An axenic isolate of Chloracidobacterium thermophilum (strain B T ) was previously obtained by using the inferred genome sequence from an enrichment culture and diel metatranscriptomic profiling analyses in situ to direct adjustments to the growth medium and incubation conditions, and thereby a defined growth medium for Chloracidobacterium thermophilum was developed. These advances allowed eight additional strains of Chloracidobacterium spp. to be isolated from microbial mat samples collected from Mushroom Spring, Yellowstone National Park, United States, at temperatures of 41, 52, and 60°C; an axenic strain was also isolated from Rupite hot spring in Bulgaria. All isolates are obligately photoheterotrophic, microaerophilic, non-motile, thermophilic, rod-shaped bacteria. Chloracidobacterium spp. synthesize multiple types of (bacterio-)chlorophylls and have type-1 reaction centers like those of green sulfur bacteria. Light harvesting is accomplished by the bacteriochlorophyll a-binding, Fenna-Matthews-Olson protein and chlorosomes containing bacteriochlorophyll c. Their genomes are approximately 3.7 Mbp in size and comprise two circular chromosomes with sizes of approximately 2.7 Mbp and 1.0 Mbp. Comparative genomic studies and phenotypic properties indicate that the nine isolates represent three species within the genus Chloracidobacterium. In addition to C. thermophilum, the microbial mats at Mushroom Spring contain a second species, tentatively named Chloracidobacterium aggregatum, which grows as aggregates in liquid cultures. The Bulgarian isolate, tentatively named Chloracidobacterium validum, will be proposed as the type species of the genus, Chloracidobacterium. Additionally, Chloracidobacterium will be proposed as the type genus of a new family, Chloracidobacteriaceae, within the order Blastocatellales, the class Blastocatellia, and the phylum Acidobacteriota.
Collapse
Affiliation(s)
- Mohit Kumar Saini
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Aswathy Sebastian
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Yoshiki Shirotori
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Nathan T. Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amaya M. Garcia Costas
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Istvan Albert
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- DSMZ – German Culture Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- DSMZ – German Culture Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Berg M, Goudeau D, Olmsted C, McMahon KD, Yitbarek S, Thweatt JL, Bryant DA, Eloe-Fadrosh EA, Malmstrom RR, Roux S. Host population diversity as a driver of viral infection cycle in wild populations of green sulfur bacteria with long standing virus-host interactions. THE ISME JOURNAL 2021; 15:1569-1584. [PMID: 33452481 PMCID: PMC8163819 DOI: 10.1038/s41396-020-00870-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005-2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Simon Roux
- Joint Genome Institute, Berkeley, CA, USA.
| |
Collapse
|
6
|
A Review of Bacteriochlorophyllides: Chemical Structures and Applications. Molecules 2021; 26:molecules26051293. [PMID: 33673610 PMCID: PMC7957641 DOI: 10.3390/molecules26051293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Generally, bacteriochlorophyllides were responsible for the photosynthesis in bacteria. Seven types of bacteriochlorophyllides have been disclosed. Bacteriochlorophyllides a/b/g could be synthesized from divinyl chlorophyllide a. The other bacteriochlorophyllides c/d/e/f could be synthesized from chlorophyllide a. The chemical structure and synthetic route of bacteriochlorophyllides were summarized in this review. Furthermore, the potential applications of bacteriochlorophyllides in photosensitizers, immunosensors, influence on bacteriochlorophyll aggregation, dye-sensitized solar cell, heme synthesis and for light energy harvesting simulation were discussed.
Collapse
|
7
|
Harada J, Mizoguchi T, Kinoshita Y, Yamamoto K, Tamiaki H. Over-expression of the C82-methyltransferase BchQ in mutant strains of the green sulfur bacterium Chlorobaculum limnaeum for synthesis of C8-hyper-alkylated chlorosomal pigments. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Saini MK, ChihChe W, Soulier N, Sebastian A, Albert I, Thiel V, Bryant DA, Hanada S, Tank M. Caldichromatium japonicum gen. nov., sp. nov., a novel thermophilic phototrophic purple sulphur bacterium of the Chromatiaceae isolated from Nakabusa hot springs, Japan. Int J Syst Evol Microbiol 2020; 70:5701-5710. [PMID: 32931408 DOI: 10.1099/ijsem.0.004465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A novel thermophilic phototrophic purple sulphur bacterium was isolated from microbial mats (56 °C) at Nakabusa hot springs, Nagano prefecture, Japan. Cells were motile, rod-shaped, stain Gram-negative and stored sulphur globules intracellularly. Bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series were the major pigments. Dense liquid cultures were red in colour. Strain No.7T was able to grow photoautotrophically using sulfide, thiosulfate, sulfite and hydrogen (in the presence of sulfide) as electron donors and bicarbonate as the sole carbon source. Optimum growth occurred under anaerobic conditions in the light at 50 °C (range, 40-56 °C) and pH 7.2 (range, pH 7-8). Major fatty acids were C16 : 0 (46.8 %), C16 : 1 ω7c (19.9 %), C18 : 1 ω7c (21.1 %), C14 : 0 (4.6 %) and C18 : 0 (2.4 %). The polar lipid profile showed phosphatidylglycerol and unidentified aminophospholipids to be the major lipids. The only quinone detected was ubiquinone-8. 16S rRNA gene sequence comparisons indicated that the novel bacterium is only distantly related to Thermochromatium tepidum with a nucleotide identity of 90.4 %. The phylogenetic analysis supported the high novelty of strain No.7T with a long-branching phylogenetic position within the Chromatiaceae next to Thermochromatium tepidum. The genome comprised a circular chromosome of 2.99 Mbp (2 989 870 bp), included no plasmids and had a DNA G+C content of 61.2 mol%. Polyphasic taxonomic analyses of the isolate suggested strain No.7T is a novel genus within the Chromatiaceae. The proposed genus name of the second truly thermophilic purple sulphur bacterium is Caldichromatium gen. nov. with the type species Caldichromatium japonicum sp. nov. (DSM 110881=JCM 39101).
Collapse
Affiliation(s)
- Mohit Kumar Saini
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Weng ChihChe
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Nathan Soulier
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, PA 16802, USA
| | - Aswathy Sebastian
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, PA 16802, USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Donald A Bryant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.,Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, PA 16802, USA
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan.,DSMZ - German Culture Collection of Microorganisms and Cell Cultures, GmbH Inhoffenstraße 7B 38124 Braunschweig, Germany
| |
Collapse
|
9
|
Hirose M, Teramura M, Harada J, Ogasawara S, Tamiaki H. In vitro C13 2-dealkoxycarbonylations of zinc chlorophyll a derivatives including C13 2-substitutes by a BciC enzyme. Bioorg Chem 2020; 102:104111. [PMID: 32738567 DOI: 10.1016/j.bioorg.2020.104111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023]
Abstract
Chlorosomes in the green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, e, or f molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, in vitro C132-dealkoxycarbonylations of zinc chlorophyll a derivatives bearing a methyl-, ethyl- or propyl-esterifying group and its methyl ester analogs with additional alkyl and hydroxy groups at the C132-position were examined using the BciC enzyme. The BciC-catalyzed reaction activity for the C132-methoxycarbonylated substrate was comparable to that for the ethoxycarbonylated compound; however, depropoxycarbonylation did not proceed. The BciC enzymatic demethoxycarbonylation of zinc methyl C132-alkylated pheophorbides a was gradually suppressed with the elongation of the alkyl chain and finally became inactive for the propyl substrate. The reaction of the C132-hydroxylated substrate (allomer) was accelerated compared to that of the C132-methyl analog possessing a similar steric size, and gave the corresponding C132-oxo product via further air-oxidation. All of the abovementioned enzymatic reactions occurred for one of the C132-epimers with the same configuration as in chlorophyllide a. The above substrate specificities and product distributions indicated the stereochemistry and size of the BciC enzymatic active site (pocket).
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
10
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
11
|
Tang K, Jia L, Yuan B, Yang S, Li H, Meng J, Zeng Y, Feng F. Aerobic Anoxygenic Phototrophic Bacteria Promote the Development of Biological Soil Crusts. Front Microbiol 2018; 9:2715. [PMID: 30483234 PMCID: PMC6243035 DOI: 10.3389/fmicb.2018.02715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Chlorophyll-containing oxygenic photoautotrophs have been well known to play a fundamental role in the development of biological soil crusts (BSCs) by harvesting solar radiations and providing fixed carbon to the BSCs ecosystems. Although the same functions can be theoretically fulfilled by the widespread bacteriochlorophyll-harboring aerobic anoxygenic phototrophic bacteria (AAnPB), whether AAnPB play a role in the formation of BSCs and how important they are to this process remain largely unknown. To address these questions, we set up a microcosm system with surface sands of the Hopq desert in northern China and observed the significant effects of near-infrared illumination on the development of BSCs. Compared to near-infrared or red light alone, the combined use of near-infrared and red lights for illumination greatly increased the thickness of BSCs, their organic matter contents and the microalgae abundance by 24.0, 103.7, and 1447.6%, respectively. These changes were attributed to the increasing abundance of AAnPB that can absorb near-infrared radiations. Our data suggest that AAnPB is a long-overlooked driver in promoting the development of BSCs in drylands.
Collapse
Affiliation(s)
- Kai Tang
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot, China
| | - Lijuan Jia
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot, China
| | - Bo Yuan
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot, China.,College of Life Science, Inner Mongolia Normal University, Huhhot, China
| | - Shanshan Yang
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot, China
| | - Heng Li
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot, China
| | - Jianyu Meng
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot, China
| | - Yonghui Zeng
- Aarhus Institute of Advanced Studies, Aarhus, Denmark.,Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Fuying Feng
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
12
|
Light-dependent accumulation of new bacteriochlorophyll-e bearing a vinyl group at the 8-position in the green sulfur bacterium Chlorobaculum limnaeum. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Harada J, Shibata Y, Teramura M, Mizoguchi T, Kinoshita Y, Yamamoto K, Tamiaki H. In Vivo Energy Transfer from Bacteriochlorophyll c,d,e, orfto Bacteriochlorophyll ain Wild-Type and Mutant Cells of the Green Sulfur BacteriumChlorobaculum limnaeum. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science; Tohoku University; Sendai 980-8578 Japan
| | - Misato Teramura
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| |
Collapse
|
14
|
Orf GS, Collins AM, Niedzwiedzki DM, Tank M, Thiel V, Kell A, Bryant DA, Montaño GA, Blankenship RE. Polymer-Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6427-6438. [PMID: 28585832 DOI: 10.1021/acs.langmuir.7b01761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.
Collapse
Affiliation(s)
| | - Aaron M Collins
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Adam Kell
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gabriel A Montaño
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
15
|
Complete Genome Sequence of the Photoautotrophic and Bacteriochlorophyll e-Synthesizing Green Sulfur Bacterium Chlorobaculum limnaeum DSM 1677 T. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00529-17. [PMID: 28619803 PMCID: PMC5473272 DOI: 10.1128/genomea.00529-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chlorobaculum limnaeum DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll e and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism, and bacteriochlorophyll biosynthesis. We report here the complete genome sequence.
Collapse
|
16
|
Zn2+-Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the smtA Promoter/Operator and smtB Repressor. Appl Environ Microbiol 2017; 83:AEM.02491-16. [PMID: 27836841 DOI: 10.1128/aem.02491-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Synechococcus sp. strain PCC 7002 has been gaining significance as both a model system for photosynthesis research and for industrial applications. Until recently, the genetic toolbox for this model cyanobacterium was rather limited and relied primarily on tools that only allowed constitutive gene expression. This work describes a two-plasmid, Zn2+-inducible expression platform that is coupled with a zurA mutation, providing enhanced Zn2+ uptake. The control elements are based on the metal homeostasis system of a class II metallothionein gene (smtA7942) and its cognate SmtB7942 repressor from Synechococcus elongatus strain PCC 7942. Under optimal induction conditions, yellow fluorescent protein (YFP) levels were about half of those obtained with the strong, constitutive phycocyanin (cpcBA6803) promoter of Synechocystis sp. strain PCC 6803. This metal-inducible expression system in Synechococcus sp. strain PCC 7002 allowed the titratable gene expression of YFP that was up to 19-fold greater than the background level. This system was utilized successfully to control the expression of the Drosophila melanogaster β-carotene 15,15'-dioxygenase, NinaB, which is toxic when constitutively expressed from a strong promoter in Synechococcus sp. strain PCC 7002. Together, these properties establish this metal-inducible system as an additional useful tool that is capable of controlling gene expression for applications ranging from basic research to synthetic biology in Synechococcus sp. strain PCC 7002. IMPORTANCE This is the first metal-responsive expression system in cyanobacteria, to our knowledge, that does not exhibit low sensitivity for induction, which is one of the major hurdles for utilizing this class of genetic tools. In addition, high levels of expression can be generated that approximate those of established constitutive systems, with the added advantage of titratable control. Together, these properties establish this Zn2+-inducible system, which is based on the smtA7942 operator/promoter and smtB7942 repressor, as a versatile gene expression platform that expands the genetic toolbox of Synechococcus sp. strain PCC 7002.
Collapse
|
17
|
Thweatt JL, Ferlez BH, Golbeck JH, Bryant DA. BciD Is a Radical S-Adenosyl-l-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7. J Biol Chem 2016; 292:1361-1373. [PMID: 27994052 DOI: 10.1074/jbc.m116.767665] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Indexed: 01/05/2023] Open
Abstract
Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 71-OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls."
Collapse
Affiliation(s)
| | - Bryan H Ferlez
- From the Departments of Biochemistry and Molecular Biology and
| | - John H Golbeck
- From the Departments of Biochemistry and Molecular Biology and.,Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Donald A Bryant
- From the Departments of Biochemistry and Molecular Biology and .,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
18
|
Shoji S, Mizoguchi T, Tamiaki H. In vitro self-assemblies of bacteriochlorophylls-c from Chlorobaculum tepidum and their supramolecular nanostructures. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Teramura M, Harada J, Mizoguchi T, Yamamoto K, Tamiaki H. In Vitro Assays of BciC Showing C132-Demethoxycarbonylase Activity Requisite for Biosynthesis of Chlorosomal Chlorophyll Pigments. PLANT & CELL PHYSIOLOGY 2016; 57:1048-1057. [PMID: 26936794 DOI: 10.1093/pcp/pcw045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
A BciC enzyme is related to the removal of the C13(2)-methoxycarbonyl group in biosynthesis of bacteriochlorophylls (BChls) c, d and e functioning in green sulfur bacteria, filamentous anoxygenic phototrophs and phototrophic acidobacteria. These photosynthetic bacteria have the largest and the most efficient light-harvesting antenna systems, called chlorosomes, containing unique self-aggregates of BChl c, d or e pigments, that lack the C13(2)-methoxycarbonyl group which disturbs chlorosomal self-aggregation. In this study, we characterized the BciC derived from the green sulfur bacterium Chlorobaculum tepidum, and examined the in vitro enzymatic activities of its recombinant protein. The BciC-catalyzing reactions of various substrates showed that the enzyme recognized chlorophyllide (Chlide) a and 3,8-divinyl(DV)-Chlide a as chlorin substrates to give 3-vinyl-bacteriochlorophyllide (3V-BChlide) d and DV-BChlide d, respectively. Since the BciC afforded a higher activity with Chlide a than that with DV-Chlide a and no activity with (DV-)protoChlides a (porphyrin substrates) and 3V-BChlide a (a bacteriochlorin substrate), this enzyme was effective for diverting the chlorosomal pigment biosynthetic pathway at the stage of Chlide a away from syntheses of other pigments such as BChl a and Chl a The addition of methanol to the reaction mixture did not prevent the BciC activity, and we identified this enzyme as Chlide a demethoxycarbonylase, not methylesterase.
Collapse
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| |
Collapse
|
20
|
Mizoguchi T, Harada J, Yamamoto K, Tamiaki H. Inactivation of bciD and bchU genes in the green sulfur bacterium Chlorobaculum limnaeum and alteration of photosynthetic pigments in the resultant mutants. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Harada J, Teramura M, Mizoguchi T, Tsukatani Y, Yamamoto K, Tamiaki H. Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments. Mol Microbiol 2015; 98:1184-98. [PMID: 26331578 DOI: 10.1111/mmi.13208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Photosynthetic green sulfur bacteria inhabit anaerobic environments with very low-light conditions. To adapt to such environments, these bacteria have evolved efficient light-harvesting antenna complexes called as chlorosomes, which comprise self-aggregated bacteriochlorophyll c in the model green sulfur, bacterium Chlorobaculum tepidum. The pigment possess a hydroxy group at the C3(1) position that produces a chiral center with R- or S-stereochemistry and the C3(1) -hydroxy group serves as a connecting moiety for the self-aggregation. Chlorobaculum tepidum carries the two possible homologous genes for C3-vinyl hydratase, bchF and bchV. In the present study, we constructed deletion mutants of each of these genes. Pigment analyses of the bchF-inactivated mutant, which still has BchV as a sole hydratase, showed higher ratios of S-epimeric bacteriochlorophyll c than the wild-type strain. The heightened prevalence of S-stereoisomers in the mutant was more remarkable at lower light intensities and caused a red shift of the chlorosomal Qy absorption band leading to advantages for light-energy transfer. In contrast, the bchV-mutant possessing only BchF showed a significant decrease of the S-epimers and accumulations of C3-vinyl BChl c species. As trans- criptional level of bchV was upregulated at lower light intensity, the Chlorobaculum tepidum adapted to low-light environments by control of the bchV transcription.
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Tsukatani
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
22
|
Chou YL, Lee YL, Yen CC, Chen LFO, Lee LC, Shaw JF. A novel recombinant chlorophyllase from cyanobacteriumCyanothece sp. ATCC 51142 for the production of bacteriochlorophyllide a. Biotechnol Appl Biochem 2015; 63:371-7. [DOI: 10.1002/bab.1380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yi-Li Chou
- Institute of Biotechnology; National Cheng Kung University; Tainan Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica; Taipei Taiwan
| | - Ya-Lin Lee
- Biotechnology Division; Taiwan Agricultural Research Institute; Taichung Taiwan
| | - Chih-Chung Yen
- Department of Biological Science and Technology; I-Shou University; Kaohsiung Taiwan
| | - Long-Fang O. Chen
- Institute of Plant and Microbial Biology, Academia Sinica; Taipei Taiwan
| | - Li-Chiun Lee
- Department of Nutrition; I-Shou University; Kaohsiung Taiwan
| | - Jei-Fu Shaw
- Institute of Biotechnology; National Cheng Kung University; Tainan Taiwan
- Department of Biological Science and Technology; I-Shou University; Kaohsiung Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
23
|
Lindsey JS. De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 2015; 115:6534-620. [PMID: 26068531 DOI: 10.1021/acs.chemrev.5b00065] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
24
|
Ryan AA, Senge MO. How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics. Photochem Photobiol Sci 2015; 14:638-60. [DOI: 10.1039/c4pp00435c] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorophylls are the natural green pigments par excellence and offer potential as therapeutics and in energy generation. This perspective outlines the state-of-the-art, their possible applications and indicates future directions in the context of green chemistry and their production from biorefineries.
Collapse
Affiliation(s)
- Aoife A. Ryan
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- 152-160 Pearse Street
- Trinity College Dublin
| | - Mathias O. Senge
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- 152-160 Pearse Street
- Trinity College Dublin
| |
Collapse
|
25
|
|
26
|
Luo SC, Khin Y, Huang SJ, Yang Y, Hou TY, Cheng YC, Chen HM, Chin YY, Chen CT, Lin HJ, Tang JKH, Chan JCC. Probing the Spatial Organization of Bacteriochlorophyll c by Solid-State Nuclear Magnetic Resonance. Biochemistry 2014; 53:5515-25. [DOI: 10.1021/bi500755r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yadana Khin
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | | - Yanshen Yang
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | | | | | | - Yi-Ying Chin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Joseph Kuo-Hsiang Tang
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | |
Collapse
|
27
|
Mizoguchi T, Harada J, Tsukatani Y, Tamiaki H. Isolation and characterization of a new bacteriochlorophyll-c bearing a neopentyl substituent at the 8-position from the bciD-deletion mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum. PHOTOSYNTHESIS RESEARCH 2014; 121:3-12. [PMID: 24496988 DOI: 10.1007/s11120-014-9977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
We recently constructed the mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum lacking BciD which was responsible for formation of a formyl group at the 7-position in bacteriochlorophyll(BChl)-e biosynthesis. This mutant exclusively gave BChl-c, but not BChl-e, as the chlorosome pigments (Harada et al. in PLoS One 8(4):e60026, 2013). By the mutation, the homolog and epimer composition of the pigment was drastically altered. The methylation at the 8(2)-position in the mutant cells proceeded to create BChl-c carrying large alkyl substituents at this position. Correspondingly, the content of BChls-c having the (S)-configuration at the chiral 3(1)-position remarkably increased and accounted for 80.6 % of the total BChl-c. Based on the alteration of the pigment composition in the mutant cells, a new BChl-c bearing the bulkiest, triple 8(2)-methylated neopentyl substituent at the 8-position ([N,E]BChl-c) was identified. The molecular structure of [N,E]BChl-c was fully determined by its NMR, mass, and circular dichroism spectra. The newly identified [N,E]BChl-c was epimerically pure at the chiral 3(1)-position and its stereochemistry was determined to be an (S)-configuration by modified Mosher's method. Further, the effects of the C8(2)-methylation on the optical absorption properties of monomeric BChls-c were investigated. The Soret but not Qy absorption bands shifted to longer wavelengths by the extra methylation (at most 1.4 nm). The C8(2)-methylation induced a slight but apparent effect on absorption properties of BChls-c in their monomeric states.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | | | | | | |
Collapse
|
28
|
Harada J, Mizoguchi T, Nomura K, Tamiaki H. Isolation and structural determination of C8-vinyl-bacteriochlorophyll d from the bciA and bchU double mutant of the green sulfur bacterium Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2014; 121:13-23. [PMID: 24789521 DOI: 10.1007/s11120-014-0007-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
The mutant lacking enzymes BciA and BchU, that catalyzed reduction of the C8-vinyl group and methylation at the C20 position of bacteriochlorophyll (BChl) c, respectively, in the green sulfur bacterium Chlorobaculum tepidum, were constructed. This mutant accumulated C8-vinyl-BChl d derivatives, and a molecular structure of the major pigment was fully characterized by its NMR, mass, and circular dichroism spectra, as well as by chemical modification: (3(1) R)-8-vinyl-12-ethyl-(R[V,E])BChl d was confirmed as a new BChl d species in the cells. In vitro chlorosome-like self-aggregates of this pigment were prepared in an aqueous micellar solution, and formed more rapidly than those of (3(1) R)-8,12-diethyl-(R[E,E])BChl d isolated from the green sulfur bacterium Chlorobaculum parvum NCIB8327d synthesizing BChl d homologs. Their red-shifted Q y absorption bands were almost the same at 761 nm, and the value was larger than those of in vitro self-aggregates of R[E,E]BChl c (737 nm) and R[V,E]BChl c (726 nm), while the monomeric states of the former gave Q y bands at shorter wavelengths than those of the latter. Red shifts by self-aggregation of the two BChl d species were estimated to be 110 nm and much larger than those by BChls c (75 nm for [E,E] and 64 nm for [V,E]).
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan,
| | | | | | | |
Collapse
|
29
|
Niedzwiedzki DM, Orf GS, Tank M, Vogl K, Bryant DA, Blankenship RE. Photophysical properties of the excited states of bacteriochlorophyll f in solvents and in chlorosomes. J Phys Chem B 2014; 118:2295-305. [PMID: 24410285 DOI: 10.1021/jp409495m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteriochlorophyll f (BChl f) is a photosynthetic pigment predicted nearly 40 years ago as a fourth potential member of the Chlorobium chlorophyll family (BChl c, d, and e). However, this pigment still has not been found in a naturally occurring organism. BChl c, d, and e are utilized by anoxygenic green photosynthetic bacteria for assembly of chlorosomes--large light-harvesting complexes that allow those organisms to survive in habitats with extremely low light intensities. Recently, using genetic methods on two different strains of Chlorobaculum limnaeum that naturally produce BChl e, two research groups produced mutants that synthesize BChl f and assemble it into chlorosomes. In this study, we present detailed investigations on spectral and dynamic characteristics of singlet excited and triplet states of BChl f with the application of ultrafast time-resolved absorption and fluorescence spectroscopies. The studies were performed on isolated BChl f in various solvents, at different temperatures, and on BChl f-containing chlorosomes in order to uncover any unusual or unfavorable properties that stand behind the lack of appearance of this pigment in natural environments.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, ‡Departments of Biology and Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | | | | |
Collapse
|
30
|
Sadaoka K, Oba T, Tamiaki H, Kashimura S, Saga Y. Demetalation kinetics of the zinc chlorophyll derivative possessing two formyl groups: effects of formyl groups conjugated to the chlorin macrocycle on physicochemical properties of photosynthetic pigments. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Demetalation kinetics of zinc chlorophyll derivative 1 possessing two formyl groups directly linked to the A- and B-rings of the chlorin macrocycle, which was synthesized from chlorophyll b, was examined under acidic conditions and compared with those of Zn chlorins 2 and 3 possessing a single formyl group in the A- and B-ring, respectively, as well as Zn chlorin 4 lacking any formyl group to unravel the substitution effects on demetalation properties of chlorophyllous pigments. Demetalation kinetics of diformylated Zn chlorin 1 was slower than those of monoformylated Zn chlorins 2 and 3, indicating that the effect of the electron-withdrawing formyl group on demetalation kinetics was amplified by introduction of two formyl groups to the chlorin macrocycle. High correlations were observed between demetalation rate constants of Zn chlorins 1–4 and the sum of Hammett σ parameters of the 3- and 7-substituents on the chlorin macrocycle, indicating that the combination of electron-withdrawing abilities of the substituents linked directly to the cyclic tetrapyrrole was responsible for demetalation properties of zinc chlorophyll derivatives.
Collapse
Affiliation(s)
- Kana Sadaoka
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Toru Oba
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shigenori Kashimura
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
31
|
Azai C, Harada J, Oh-oka H. Gene expression system in green sulfur bacteria by conjugative plasmid transfer. PLoS One 2013; 8:e82345. [PMID: 24312414 PMCID: PMC3842273 DOI: 10.1371/journal.pone.0082345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/31/2013] [Indexed: 11/24/2022] Open
Abstract
Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum) WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin and streptomycin/spectinomycin resistance, respectively. The transconjugants harboring these plasmids were reproducibly obtained at a frequency of approximately 10-5 by selection with erythromycin and a combination of streptomycin and spectinomycin, respectively. These plasmids were stably maintained in C. tepidum cells in the presence of these antibiotics. The plasmid transfer to another mesophilic green sulfur bacterium, C. limnaeum (formerly Chlorobium phaeobacteroides) RK-j-1, was also achieved with pDSK5192. The expression plasmid based on pDSK5191 was constructed by incorporating the upstream and downstream regions of the pscAB gene cluster on the C. tepidum genome, since these regions were considered to include a constitutive promoter and a ρ-independent terminator, respectively. Growth defections of the ∆cycA and ∆soxB mutants were completely rescued after introduction of pDSK5191-cycA and -soxB that were designed to express their complementary genes. On the other hand, pDSK5191-6xhis-pscAB, which incorporated the gene cluster of 6xhis-pscA and pscB, produced approximately four times more of the photosynthetic reaction center complex with His-tagged PscA as compared with that expressed in the genome by the conventional natural transformation method. This expression system, based on conjugative plasmid, would be applicable to general molecular biological studies of green sulfur bacteria.
Collapse
Affiliation(s)
- Chihiro Azai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- * E-mail:
| |
Collapse
|
32
|
Orf GS, Blankenship RE. Chlorosome antenna complexes from green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 116:315-31. [PMID: 23761131 DOI: 10.1007/s11120-013-9869-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.
Collapse
Affiliation(s)
- Gregory S Orf
- Departments of Chemistry and Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | | |
Collapse
|
33
|
Reconstruction of rod self-aggregates of natural bacteriochlorophylls-c from Chloroflexus aurantiacus. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Orf GS, Tank M, Vogl K, Niedzwiedzki DM, Bryant DA, Blankenship RE. Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:493-501. [DOI: 10.1016/j.bbabio.2013.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
35
|
Harada J, Mizoguchi T, Satoh S, Tsukatani Y, Yokono M, Noguchi M, Tanaka A, Tamiaki H. Specific gene bciD for C7-methyl oxidation in bacteriochlorophyll e biosynthesis of brown-colored green sulfur bacteria. PLoS One 2013; 8:e60026. [PMID: 23560066 PMCID: PMC3613366 DOI: 10.1371/journal.pone.0060026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/20/2013] [Indexed: 11/18/2022] Open
Abstract
The gene named bciD, which encodes the enzyme involved in C7-formylation in bacteriochlorophyll e biosynthesis, was found and investigated by insertional inactivation in the brown-colored green sulfur bacterium Chlorobaculum limnaeum (previously called Chlorobium phaeobacteroides). The bciD mutant cells were green in color, and accumulated bacteriochlorophyll c homologs bearing the 7-methyl group, compared to C7-formylated BChl e homologs in the wild type. BChl-c homolog compositions in the mutant were further different from those in Chlorobaculum tepidum which originally produced BChl c: (3(1) S)-8-isobutyl-12-ethyl-BChl c was unusually predominant.
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- * E-mail: (JH); (HT)
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Souichirou Satoh
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Tsukatani
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masato Noguchi
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sapporo, Hokkaido, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail: (JH); (HT)
| |
Collapse
|
36
|
Mizoguchi T, Harada J, Yoshitomi T, Tamiaki H. A variety of glycolipids in green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 114:179-188. [PMID: 23420454 DOI: 10.1007/s11120-013-9802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
The compositions of glycolipids in the following seven strains of green photosynthetic bacteria were investigated at the molecular level using LC-MS coupled with an evaporative light scattering detector: Chlorobium (Chl.) limicola strains Larsen (30 °C as the optimal cultivation temperature) and DSM245 (30 °C), Chlorobaculum (Cba.) tepidum strain ATCC49652 (45 °C), Cba. parvum strain NCIB8327 (30 °C), Cba. limnaeum strain 1549 (30 °C), Chl. phaeovibrioides DSM269 (30 °C), and Chloroflexus (Cfl.) aurantiacus strain J-10-fl (55 °C). Dependence of the molecular structures of glycolipids including the chain-length of their acyl groups upon bacterial cultivation temperatures was clearly observed. The organisms with their optimal temperatures of 30, 45, and 55 °C dominantly accumulated glycolipids possessing the acyl chains in the range of C(15)-C(16), C(16)-C(17), and C(18)-C(20), respectively. Cba. tepidum with an optimal temperature of 45 °C preferred the insertion of a methylene group to produce finally a C(17)-cyclopropane chain. Cfl. aurantiacus cultured optimally at 55 °C caused a drastic increase in the chain-length. Notably, the length of such acyl groups corresponded to that of the esterifying chain in the 17-propionate residues of self-aggregative bacteriochlorophylls-c/d/e, indicating stabilization of their supramolecular structures through hydrophobic interactions among those hydrocarbon chains. Based on the detailed compositions of glycolipids, a survival strategy of green photosynthetic bacteria grown in the wide range of temperatures is discussed.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | |
Collapse
|
37
|
Mizoguchi T, Harada J, Tamiaki H. Characterization of chlorophyll pigments in the mutant lacking 8-vinyl reductase of green photosynthetic bacterium Chlorobaculum tepidum. Bioorg Med Chem 2012; 20:6803-10. [DOI: 10.1016/j.bmc.2012.09.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
|
38
|
A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci Rep 2012; 2:671. [PMID: 22993696 PMCID: PMC3445912 DOI: 10.1038/srep00671] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/03/2012] [Indexed: 11/21/2022] Open
Abstract
The discovery of new chlorophyllous pigments would provide greater understanding of the mechanisms and evolution of photosynthesis. Bacteriochlorophyll f has never been observed in nature, although this name was proposed ~40 years ago based on structurally related compounds. We constructed a bacteriochlorophyll f–accumulating mutant of the green sulfur bacterium Chlorobaculum limnaeum, which originally produced bacteriochlorophyll e, by knocking out the bchU gene encoding C-20 methyltransferase based on natural transformation. This novel pigment self-aggregates in an in vivo light-harvesting antenna, the chlorosome, and exhibits a Qy peak of 705 nm, more blue-shifted than any other chlorosome reported so far; the peak overlaps the maximum (~700 nm) of the solar photon flux spectrum. Bacteriochlorophyll f chlorosomes can transfer light energy from core aggregated pigments to another bacteriochlorophyll in the chlorosomal envelope across an energy gap of ~100 nm, and is thus a promising material for development of new bioenergy applications.
Collapse
|