1
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Seeger C, Dyrhage K, Mahajan M, Odelgard A, Lind SB, Andersson SGE. The Subcellular Proteome of a Planctomycetes Bacterium Shows That Newly Evolved Proteins Have Distinct Fractionation Patterns. Front Microbiol 2021; 12:643045. [PMID: 34745019 PMCID: PMC8567305 DOI: 10.3389/fmicb.2021.643045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Planctomycetes bacteria have unique cell architectures with heavily invaginated membranes as confirmed by three-dimensional models reconstructed from FIB-SEM images of Tuwongella immobilis and Gemmata obscuriglobus. The subcellular proteome of T. immobilis was examined by differential solubilization followed by LC-MS/MS analysis, which identified 1569 proteins in total. The Tris-soluble fraction contained mostly cytoplasmic proteins, while inner and outer membrane proteins were found in the Triton X-100 and SDS-soluble fractions, respectively. For comparisons, the subcellular proteome of Escherichia coli was also examined using the same methodology. A notable difference in the overall fractionation pattern of the two species was a fivefold higher number of predicted cytoplasmic proteins in the SDS-soluble fraction in T. immobilis. One category of such proteins is represented by innovations in the Planctomycetes lineage, including unique sets of serine/threonine kinases and extracytoplasmic sigma factors with WD40 repeat domains for which no homologs are present in E. coli. Other such proteins are members of recently expanded protein families in which the newly evolved paralog with a new domain structure is recovered from the SDS-soluble fraction, while other paralogs may have similar domain structures and fractionation patterns as the single homolog in E. coli. The expanded protein families in T. immobilis include enzymes involved in replication-repair processes as well as in rRNA and tRNA modification and degradation. These results show that paralogization and domain shuffling have yielded new proteins with distinct fractionation characteristics. Understanding the molecular intricacies of these adaptive changes might aid in the development of a model for the evolution of cellular complexity.
Collapse
Affiliation(s)
- Christian Seeger
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Karl Dyrhage
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mayank Mahajan
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna Odelgard
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
|
4
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
5
|
Mahajan M, Yee B, Hägglund E, Guy L, Fuerst JA, Andersson SGE. Paralogization and New Protein Architectures in Planctomycetes Bacteria with Complex Cell Structures. Mol Biol Evol 2019; 37:1020-1040. [DOI: 10.1093/molbev/msz287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Bacteria of the phylum Planctomycetes have a unique cell plan with an elaborate intracellular membrane system, thereby resembling eukaryotic cells. The origin and evolution of these remarkable features is debated. To study the evolutionary genomics of bacteria with complex cell architectures, we have resequenced the 9.2-Mb genome of the model organism Gemmata obscuriglobus and sequenced the 10-Mb genome of G. massiliana Soil9, the 7.9-Mb genome of CJuql4, and the 6.7-Mb genome of Tuwongella immobilis, all of which belong to the family Gemmataceae. A gene flux analysis of the Planctomycetes revealed a massive emergence of novel protein families at multiple nodes within the Gemmataceae. The expanded protein families have unique multidomain architectures composed of domains that are characteristic of prokaryotes, such as the sigma factor domain of extracytoplasmic sigma factors, and domains that have proliferated in eukaryotes, such as the WD40, leucine-rich repeat, tetratricopeptide repeat and Ser/Thr kinase domains. Proteins with identifiable domains in the Gemmataceae have longer lengths and linkers than proteins in most other bacteria, and the analyses suggest that these traits were ancestrally present in the Planctomycetales. A broad comparison of protein length distribution profiles revealed an overlap between the longest proteins in prokaryotes and the shortest proteins in eukaryotes. We conclude that the many similarities between proteins in the Planctomycetales and the eukaryotes are due to convergent evolution and that there is no strict boundary between prokaryotes and eukaryotes with regard to features such as gene paralogy, protein length, and protein domain composition patterns.
Collapse
Affiliation(s)
- Mayank Mahajan
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Benjamin Yee
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Emil Hägglund
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Franke JD, Blomberg WR, Todd RT, Thomas RW, Selmecki AM. Assembly of a complete genome sequence for Gemmata obscuriglobus reveals a novel prokaryotic rRNA operon gene architecture. Antonie van Leeuwenhoek 2018; 111:2095-2105. [DOI: 10.1007/s10482-018-1102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
|
7
|
Development of a chemically-defined minimal medium for studies on growth and protein uptake of Gemmata obscuriglobus. J Microbiol Methods 2017; 145:40-46. [PMID: 29292201 DOI: 10.1016/j.mimet.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/21/2022]
Abstract
We experimentally determined minimal media requirements for Gemmata obscuriglobus, a Gram-negative Planctomycete bacteria with several unusual physiological features. We find that supplementing media with the usual vitamins solution does not improve viability, but does result in an increased growth rate in liquid cultures and a larger colony size on agar plates. By systematically including individual vitamins, or omitting individual vitamins, from media we find that the addition of only two vitamins, biotin and cyanocobalamin, are sufficient to restore colony growth to comparable rates as other commonly used media. Overall, our findings define minimal media requirements for the culturing of this low-nutrient organism. One of G. obscuriglobus unusual physiological features is the ability to internalize fully-folded proteins. Using fluorescence microscopy and flow cytometery we show that this physiological behavior is dependent on media state and composition. The percentage of cells exhibiting internalization of GFP when grown on a particular, solid minimal medium is far greater than cells grown in liquid medium of similar composition or other solid media with different compositions.
Collapse
|
8
|
Mahat R, Seebart C, Basile F, Ward NL. Global and Targeted Lipid Analysis of Gemmata obscuriglobus Reveals the Presence of Lipopolysaccharide, a Signature of the Classical Gram-Negative Outer Membrane. J Bacteriol 2016; 198:221-36. [PMID: 26483522 PMCID: PMC4751799 DOI: 10.1128/jb.00517-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/10/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Planctomycete bacteria possess many unusual cellular properties, contributing to a cell plan long considered to be unique among the bacteria. However, data from recent studies are more consistent with a modified Gram-negative cell plan. A key feature of the Gram-negative plan is the presence of an outer membrane (OM), for which lipopolysaccharide (LPS) is a signature molecule. Despite genomic evidence for an OM in planctomycetes, no biochemical verification has been reported. We attempted to detect and characterize LPS in the planctomycete Gemmata obscuriglobus. We obtained direct evidence for LPS and lipid A using electrophoresis and differential staining. Gas chromatography-mass spectrometry (GC-MS) compositional analysis of LPS extracts identified eight different 3-hydroxy fatty acids (3-HOFAs), 2-keto 3-deoxy-d-manno-octulosonic acid (Kdo), glucosamine, and hexose and heptose sugars, a chemical profile unique to Gram-negative LPS. Combined with molecular/structural information collected from matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS analysis of putative intact lipid A, these data led us to propose a heterogeneous hexa-acylated lipid A structure (multiple-lipid A species). We also confirmed previous reports of G. obscuriglobus whole-cell fatty acid (FA) and sterol compositions and detected a novel polyunsaturated FA (PUFA). Our confirmation of LPS, and by implication an OM, in G. obscuriglobus raises the possibility that other planctomycetes possess an OM. The pursuit of this question, together with studies of the structural connections between planctomycete LPS and peptidoglycans, will shed more light on what appears to be a planctomycete variation on the Gram-negative cell plan. IMPORTANCE Bacterial species are classified as Gram positive or negative based on their cell envelope structure. For 25 years, the envelope of planctomycete bacteria has been considered a unique exception, as it lacks peptidoglycan and an outer membrane (OM). However, the very recent detection of peptidoglycan in planctomycete species has provided evidence for a more conventional cell wall and raised questions about other elements of the cell envelope. Here, we report direct evidence of lipopolysaccharide in the planctomycete G. obscuriglobus, suggesting the presence of an OM and supporting the proposal that the planctomycete cell envelope is an extension of the canonical Gram-negative plan. This interpretation features a convoluted cytoplasmic membrane and expanded periplasmic space, the functions of which provide an intriguing avenue for future investigation.
Collapse
Affiliation(s)
- Rajendra Mahat
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Corrine Seebart
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Naomi L Ward
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
9
|
Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 2014; 111:11067-72. [PMID: 25024214 DOI: 10.1073/pnas.1409187111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis. The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell's ribosomes appear to have less direct access to the cell's nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes.
Collapse
|
10
|
Sagulenko E, Morgan GP, Webb RI, Yee B, Lee KC, Fuerst JA. Structural studies of planctomycete Gemmata obscuriglobus support cell compartmentalisation in a bacterium. PLoS One 2014; 9:e91344. [PMID: 24632833 PMCID: PMC3954628 DOI: 10.1371/journal.pone.0091344] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/11/2014] [Indexed: 12/03/2022] Open
Abstract
Members of phylum Planctomycetes have been proposed to possess atypical cell organisation for the Bacteria, having a structure of sectioned cells consistent with internal compartments surrounded by membranes. Here via electron tomography we confirm the presence of compartments in the planctomycete Gemmata obscuriglobus cells. Resulting 3-D models for the most prominent structures, nuclear body and riboplasm, demonstrate their entirely membrane - enclosed nature. Immunogold localization of the FtsK protein also supports the internal organisation of G.obscuriglobus cells and their unique mechanism of cell division. We discuss how these new data expand our knowledge on bacterial cell biology and suggest evolutionary consequences of the findings.
Collapse
Affiliation(s)
- Evgeny Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Garry P. Morgan
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard I. Webb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin Yee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kuo-Chang Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
van Teeseling MCF, de Almeida NM, Klingl A, Speth DR, Op den Camp HJM, Rachel R, Jetten MSM, van Niftrik L. A new addition to the cell plan of anammox bacteria: "Candidatus Kuenenia stuttgartiensis" has a protein surface layer as the outermost layer of the cell. J Bacteriol 2014; 196:80-9. [PMID: 24142254 PMCID: PMC3911120 DOI: 10.1128/jb.00988-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/11/2013] [Indexed: 01/24/2023] Open
Abstract
Anammox bacteria perform anaerobic ammonium oxidation (anammox) and have a unique compartmentalized cell consisting of three membrane-bound compartments (from inside outwards): the anammoxosome, riboplasm, and paryphoplasm. The cell envelope of anammox bacteria has been proposed to deviate from typical bacterial cell envelopes by lacking both peptidoglycan and a typical outer membrane. However, the composition of the anammox cell envelope is presently unknown. Here, we investigated the outermost layer of the anammox cell and identified a proteinaceous surface layer (S-layer) (a crystalline array of protein subunits) as the outermost component of the cell envelope of the anammox bacterium "Candidatus Kuenenia stuttgartiensis." This is the first description of an S-layer in the phylum of the Planctomycetes and a new addition to the cell plan of anammox bacteria. This S-layer showed hexagonal symmetry with a unit cell consisting of six protein subunits. The enrichment of the S-layer from the cell led to a 160-kDa candidate protein, Kustd1514, which has no homology to any known protein. This protein is present in a glycosylated form. Antibodies were generated against the glycoprotein and used for immunogold localization. The antiserum localized Kustd1514 to the S-layer and thus verified that this protein forms the "Ca. Kuenenia stuttgartiensis" S-layer.
Collapse
Affiliation(s)
- Muriel C. F. van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Naomi M. de Almeida
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Andreas Klingl
- Centre for Electron Microscopy, Institute for Anatomy, University of Regensburg, Regensburg, Germany
| | - Daan R. Speth
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Reinhard Rachel
- Centre for Electron Microscopy, Institute for Anatomy, University of Regensburg, Regensburg, Germany
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|