1
|
Modeling poliovirus replication dynamics from live time-lapse single-cell imaging data. Sci Rep 2021; 11:9622. [PMID: 33953215 PMCID: PMC8100109 DOI: 10.1038/s41598-021-87694-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/15/2021] [Indexed: 02/03/2023] Open
Abstract
Viruses experience selective pressure on the timing and order of events during infection to maximize the number of viable offspring they produce. Additionally, they may experience variability in cellular environments encountered, as individual eukaryotic cells can display variation in gene expression among cells. This leads to a dynamic phenotypic landscape that viruses must face to replicate. To examine replication dynamics displayed by viruses faced with this variable landscape, we have developed a method for fitting a stochastic mechanistic model of viral infection to time-lapse imaging data from high-throughput single-cell poliovirus infection experiments. The model's mechanistic parameters provide estimates of several aspects associated with the virus's intracellular dynamics. We examine distributions of parameter estimates and assess their variability to gain insight into the root causes of variability in viral growth dynamics. We also fit our model to experiments performed under various drug treatments and examine which parameters differ under these conditions. We find that parameters associated with translation and early stage viral replication processes are essential for the model to capture experimentally observed dynamics. In aggregate, our results suggest that differences in viral growth data generated under different treatments can largely be captured by steps that occur early in the replication process.
Collapse
|
2
|
Azab SM, Fekry AM. The application of a bee glue-modified sensor in daclatasvir dual effect detection. NEW J CHEM 2017. [DOI: 10.1039/c7nj01517h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and novel carbon paste sensor containing chemically mixed propolis (bee glue) and graphene oxide (GO) was prepared, then electrochemical deposition of silver nanoparticles (AgNPs) was performed to fabricate a selective and sensible electrochemical sensor to detect Daclatasvir (DAC).
Collapse
Affiliation(s)
- Shereen M. Azab
- Pharmaceutical Chemistry Dept., National Organization for Drug Control and Research
- Giza
- Egypt
| | - Amany M. Fekry
- Chemistry Department, Faculty of Science, Cairo University
- Giza
- Egypt
| |
Collapse
|
3
|
Iwami S, Sato K, Morita S, Inaba H, Kobayashi T, Takeuchi JS, Kimura Y, Misawa N, Ren F, Iwasa Y, Aihara K, Koyanagi Y. Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin. Sci Rep 2015; 5:12256. [PMID: 26184634 PMCID: PMC4505337 DOI: 10.1038/srep12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022] Open
Abstract
Among the four groups of HIV-1 (M, N, O, and P), HIV-1M alone is pandemic and has rapidly expanded across the world. However, why HIV-1M has caused a devastating pandemic while the other groups remain contained is unclear. Interestingly, only HIV-1M Vpu, a viral protein, can robustly counteract human tetherin, which tethers budding virions. Therefore, we hypothesize that this property of HIV-1M Vpu facilitates human-to-human viral transmission. Adopting a multilayered experimental-mathematical approach, we demonstrate that HIV-1M Vpu confers a 2.38-fold increase in the prevalence of HIV-1 transmission. When Vpu activity is lost, protected human populations emerge (i.e., intrinsic herd immunity develops) through the anti-viral effect of tetherin. We also reveal that all Vpus of transmitted/founder HIV-1M viruses maintain anti-tetherin activity. These findings indicate that tetherin plays the role of a host restriction factor, providing ‘intrinsic herd immunity’, whereas Vpu has evolved in HIV-1M as a tetherin antagonist.
Collapse
Affiliation(s)
- Shingo Iwami
- 1] Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Fukuoka 8128581, Japan [2] PRESTO, JST, Kawaguchi, Saitama 3320012, Japan [3] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Kei Sato
- 1] Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan [2] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Satoru Morita
- 1] Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 4328561, Japan [2] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Hisashi Inaba
- 1] Graduate School of Mathematical Sciences, The University of Tokyo, Meguro-ku, Tokyo 1538914, Japan [2] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Tomoko Kobayashi
- Laboratory for Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 2430034, Japan
| | - Junko S Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| | - Yuichi Kimura
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| | - Fengrong Ren
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 1138510, Japan
| | - Yoh Iwasa
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Fukuoka 8128581, Japan
| | - Kazuyuki Aihara
- 1] Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 1538505, Japan [2] Graduate School of Information Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 1138656, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| |
Collapse
|
4
|
Kakizoe Y, Nakaoka S, Beauchemin CAA, Morita S, Mori H, Igarashi T, Aihara K, Miura T, Iwami S. A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain. Sci Rep 2015; 5:10371. [PMID: 25996439 PMCID: PMC4440524 DOI: 10.1038/srep10371] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
The time elapsed between successful cell infection and the start of virus production is called the eclipse phase. Its duration is specific to each virus strain and, along with an effective virus production rate, plays a key role in infection kinetics. How the eclipse phase varies amongst cells infected with the same virus strain and therefore how best to mathematically represent its duration is not clear. Most mathematical models either neglect this phase or assume it is exponentially distributed, such that at least some if not all cells can produce virus immediately upon infection. Biologically, this is unrealistic (one must allow for the translation, transcription, export, etc. to take place), but could be appropriate if the duration of the eclipse phase is negligible on the time-scale of the infection. If it is not, however, ignoring this delay affects the accuracy of the mathematical model, its parameter estimates, and predictions. Here, we introduce a new approach, consisting in a carefully designed experiment and simple analytical expressions, to determine the duration and distribution of the eclipse phase in vitro. We find that the eclipse phase of SHIV-KS661 lasts on average one day and is consistent with an Erlang distribution.
Collapse
Affiliation(s)
- Yusuke Kakizoe
- Department of Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Shinji Nakaoka
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Satoru Morita
- Department of Mathematical and Systems Engineering, Shizuoka University, Shizuoka 432-8561, Japan
| | - Hiromi Mori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | - Kazuyuki Aihara
- 1] Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan [2] Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tomoyuki Miura
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Shingo Iwami
- 1] Department of Biology, Kyushu University, Fukuoka 812-8581, Japan [2] PRESTO, JST, Kawaguchi, Saitama 3320012, Japan [3] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| |
Collapse
|
6
|
Improving the estimation of the death rate of infected cells from time course data during the acute phase of virus infections: application to acute HIV-1 infection in a humanized mouse model. Theor Biol Med Model 2014; 11:22. [PMID: 24885827 PMCID: PMC4035760 DOI: 10.1186/1742-4682-11-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/13/2014] [Indexed: 01/19/2023] Open
Abstract
Background Mathematical modeling of virus dynamics has provided quantitative insights into viral infections such as influenza, the simian immunodeficiency virus/human immunodeficiency virus, hepatitis B, and hepatitis C. Through modeling, we can estimate the half-life of infected cells, the exponential growth rate, and the basic reproduction number (R0). To calculate R0 from virus load data, the death rate of productively infected cells is required. This can be readily estimated from treatment data collected during the chronic phase, but is difficult to determine from acute infection data. Here, we propose two new models that can reliably estimate the average life span of infected cells from acute-phase data, and apply both methods to experimental data from humanized mice infected with HIV-1. Methods Both new models, called as the reduced quasi-steady state (RQS) model and the piece-wise regression (PWR) model, are derived by simplification of a standard model for the acute-phase dynamics of target cells, viruses and infected cells. By having only a limited number of parameters, both models allow us to reliably estimate the death rate of productively infected cells. Simulated datasets with plausible parameter values are generated with the standard model to compare the performance of the new models with that of the major previous model (i.e., the simple exponential model). Finally, we fit models to time course data from HIV-1 infected humanized mice to estimate the several important parameters characterizing their acute infection. Results and conclusions The new models provided much better estimates than the previous model because they more precisely capture the de novo infection process. Both models describe the acute phase of HIV-1 infected humanized mice reasonably well, and we estimated an average death rate of infected cells of 0.61 and 0.61, an average exponential growth rate of 0.69 and 0.76, and an average basic reproduction number of 2.30 and 2.38 in the RQS model and the PWR model, respectively. These estimates are fairly close to those obtained in humans.
Collapse
|