1
|
Banicod RJS, Ntege W, Njiru MN, Abubakar WH, Kanthenga HT, Javaid A, Khan F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol 2025; 428:110996. [PMID: 39615409 DOI: 10.1016/j.ijfoodmicro.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
Collapse
Affiliation(s)
- Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar 30500, Kenya
| | - Woru Hamzat Abubakar
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Aquaculture and Biotechnology Department, National Institute for Freshwater Fisheries Research, New Bussa, Niger State 913003, Nigeria
| | - Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi 301401, Malawi
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Jin X, Wang S, Wang Y, Qi Q, Liang Q. Metabolic engineering strategies for L-Homoserine production in Escherichia coli. Microb Cell Fact 2024; 23:338. [PMID: 39702271 DOI: 10.1186/s12934-024-02623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
L-Homoserine, serves as a non-essential precursor for the essential amino acids derived from L-aspartate in both animals and humans. It finds widespread applications across the food, cosmetics, pharmaceutical, and animal feed industries. Microbial fermentation, primarily utilizing Escherichia coli, is the dominant approach for L-Homoserine production. However, despite recent advancements in fermentative processes employing E. coli strains, low production efficiency remains a significant barrier to its commercial viability. This review explores the biosynthesis, secretion, and regulatory mechanisms of L-Homoserine in E. coli while assessing various metabolic engineering strategies aimed at improving production efficiency.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Sumeng Wang
- Qingdao Agricultural University, Qingdao, 266100, China
| | - Yanbing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China.
| |
Collapse
|
3
|
Matlala MP, Matotoka MM, Shekwa W, Masoko P. Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis. Antibiotics (Basel) 2024; 13:1027. [PMID: 39596722 PMCID: PMC11591134 DOI: 10.3390/antibiotics13111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Tuberculosis is a worldwide prevalent and recurring disease that contributes significantly to high mortality rates. This study aimed to investigate the antioxidant, anti-mycobacterial, and antibiofilm activities of Artemisia afra acetone crude extract. Methodology: The crude acetone extract was fractionated using column chromatography and characterized by liquid chromatography-mass spectroscopy (LC-MS). A 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay was used to assess the antioxidant activity. The antimycobacterial activity against Mycobacterium smegmatis was screened using bioautography, broth microdilution, and growth curve assays. Molecular docking was used to predict the possible mechanisms of action of the LC-MS-identified ligands. Crystal violet was used to screen for anti-cell adherence and biofilm inhibition activities. Results: The crude extract scavenged 77% of the free radical at 16 μg/mL. The subfraction had a lower minimum inhibitory concentration (MIC) (0.078 mg/mL) compared to the crude extract (0.313-0.833 mg/mL). The subfraction had a concentration-dependent inhibition effect (>50%) on mycobacterial cell adherence and early biofilms. However, the mature biofilms were resistant. Two propanoate compounds, [(2S)-3-[6-acetyl-4,6-dihydroxy-3-[(1R)-1-hydroxyethyl]tetrahydropyran-2-yl]-2-hydroxy-propyl] (2R)-2-amino-3-(1H-imidazol-5-yl)propanoate and 3-(6-aminopurin-9-yl)propyl 3-(2,4-dioxo-1,3-diazaspiro[4.5]decan-3-yl) propanoate, had binding energies of -5.4 kcal/mol and -6.3 kcal/mol, respectively, against the RNA polymerase binding protein. Conclusions: The results show that A. afra acetone crude extract has antioxidant and antimycobacterial activities that can be improved by fractionation.
Collapse
Affiliation(s)
| | | | | | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovena 0727, South Africa; (M.P.M.); (M.M.M.); (W.S.)
| |
Collapse
|
4
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
5
|
Hamion G, Aucher W, Mercier A, Tewes F, Menard M, Bertaux J, Girardot M, Imbert C. Insights into betulinic acid as a promising molecule to fight the interkingdom biofilm Staphylococcus aureus-Candida albicans. Int J Antimicrob Agents 2024; 63:107166. [PMID: 38570017 DOI: 10.1016/j.ijantimicag.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The demand for antibiofilm molecules has increased over several years due to their potential to fight biofilm-associated infections, such as those including the interkingdom Staphylococcus aureus-Candida albicans occurring in clinical settings worldwide. Recently, we identified a pentacyclic triterpenoid compound, betulinic acid, from invasive macrophytes, with interesting antibiofilm properties. The aim of the present study was to provide insights into the mechanism of action of betulinic acid against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that betulinic acid was effective at damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. The results suggested an action of betulinic acid on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, biofilm growth and the physical interactions of both microbial species. Further results of real-time polymerase chain reaction argued in favour of a reduction in S. aureus-C. albicans physical interaction due to betulinic acid by the modulation of biofilm-related gene expression, as observed in early stages of biofilm formation. This study revealed the potential of betulinic acid as a candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.
Collapse
Affiliation(s)
- Guillaume Hamion
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France.
| | - Willy Aucher
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Anne Mercier
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Frederic Tewes
- Pharmacology of Antimicrobial Agents and Antibioresistance, University of Poitiers, INSERM U1070, Poitiers, France
| | - Maëlenn Menard
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Joanne Bertaux
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Marion Girardot
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christine Imbert
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
6
|
Höhmann S, Briol TA, Ihle N, Frick O, Schmid A, Bühler B. Glycolate as alternative carbon source for Escherichia coli. J Biotechnol 2024; 381:76-85. [PMID: 38190849 DOI: 10.1016/j.jbiotec.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
The physiology of different Escherichia coli stains was analyzed for growth with glycolate as a potentially promising sustainable sole source of carbon and energy. Different E. coli strains showed large differences regarding lag phases after provision of glycolate. Whereas E. coli W showed fast adaptation, E. coli BW25113, JM101, and BL21 (DE3) needed extensive time for adaption (up to 30 generations) until the attainable µmax was reached, which, at 30 °C, amounted to 0.20-0.25 h-1 for all strains. The overexpression of genes encoding glycolate degradation did neither overcome the need for adaptation of E. coli BL21 (DE3) nor improve growth of E. coli W. Rather, high level expression of proteins involved in uptake and initial degradation steps had an adverse effect on growth. Overall, the results show a promising capacity of E. coli strains for growth on glycolate.
Collapse
Affiliation(s)
- Sonja Höhmann
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nadine Ihle
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Oliver Frick
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
7
|
Liu B, Sträuber H, Centler F, Harms H, da Rocha UN, Kleinsteuber S. Functional Redundancy Secures Resilience of Chain Elongation Communities upon pH Shifts in Closed Bioreactor Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18350-18361. [PMID: 37097211 PMCID: PMC10666546 DOI: 10.1021/acs.est.2c09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
For anaerobic mixed cultures performing microbial chain elongation, it is unclear how pH alterations affect the abundance of key players, microbial interactions, and community functioning in terms of medium-chain carboxylate yields. We explored pH effects on mixed cultures enriched in continuous anaerobic bioreactors representing closed model ecosystems. Gradual pH increase from 5.5 to 6.5 induced dramatic shifts in community composition, whereas product range and yields returned to previous states after transient fluctuations. To understand community responses to pH perturbations over long-term reactor operation, we applied Aitchison PCA clustering, linear mixed-effects models, and random forest classification on 16S rRNA gene amplicon sequencing and process data. Different pH preferences of two key chain elongation species─one Clostridium IV species related to Ruminococcaceae bacterium CPB6 and one Clostridium sensu stricto species related to Clostridium luticellarii─were determined. Network analysis revealed positive correlations of Clostridium IV with lactic acid bacteria, which switched from Olsenella to Lactobacillus along the pH increase, illustrating the plasticity of the food web in chain elongation communities. Despite long-term cultivation in closed systems over the pH shift experiment, the communities retained functional redundancy in fermentation pathways, reflected by the emergence of rare species and concomitant recovery of chain elongation functions.
Collapse
Affiliation(s)
- Bin Liu
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
- KU
Leuven, Department of Microbiology,
Immunology and Transplantation, Rega Institute for Medical Research,
Laboratory of Molecular Bacteriology, BE-3000 Leuven, Belgium
| | - Heike Sträuber
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| | - Florian Centler
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
- School
of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Hauke Harms
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| | - Sabine Kleinsteuber
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| |
Collapse
|
8
|
Pyne ME, Bagley JA, Narcross L, Kevvai K, Exley K, Davies M, Wang Q, Whiteway M, Martin VJJ. Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid. Nat Commun 2023; 14:5294. [PMID: 37652930 PMCID: PMC10471774 DOI: 10.1038/s41467-023-41064-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Saccharomyces cerevisiae is a workhorse of industrial biotechnology owing to the organism's prominence in alcohol fermentation and the suite of sophisticated genetic tools available to manipulate its metabolism. However, S. cerevisiae is not suited to overproduce many bulk bioproducts, as toxicity constrains production at high titers. Here, we employ a high-throughput assay to screen 108 publicly accessible yeast strains for tolerance to 20 g L-1 adipic acid (AA), a nylon precursor. We identify 15 tolerant yeasts and select Pichia occidentalis for production of cis,cis-muconic acid (CCM), the precursor to AA. By developing a genome editing toolkit for P. occidentalis, we demonstrate fed-batch production of CCM with a maximum titer (38.8 g L-1), yield (0.134 g g-1 glucose) and productivity (0.511 g L-1 h-1) that surpasses all metrics achieved using S. cerevisiae. This work brings us closer to the industrial bioproduction of AA and underscores the importance of host selection in bioprocessing.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Department of Biology, University of Western Ontario, Ontario, Canada
| | - James A Bagley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Lauren Narcross
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Amyris, Inc., Emeryville, CA, USA
| | - Kaspar Kevvai
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Pivot Bio, Berkeley, CA, USA
| | - Kealan Exley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Novo Nordisk Foundation Center for Biosustainability, Lyngby, Denmark
| | - Meghan Davies
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- BenchSci, Toronto, ON, Canada
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Vincent J J Martin
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
| |
Collapse
|
9
|
Lin Z, Hu Z, Zhou L, Liu B, Huang X, Deng Z, Qu X. A large conserved family of small-molecule carboxyl methyltransferases identified from microorganisms. Proc Natl Acad Sci U S A 2023; 120:e2301389120. [PMID: 37155856 PMCID: PMC10193983 DOI: 10.1073/pnas.2301389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Small-molecule carboxyl methyltransferases (CbMTs) constitute a small proportion of the reported methyltransferases, but they have received extensive attention due to their important physiological functions. Most of the small-molecule CbMTs isolated to date originate from plants and are members of the SABATH family. In this study, we identified a type of CbMT (OPCMT) from a group of Mycobacteria, which has a distinct catalytic mechanism from the SABATH methyltransferases. The enzyme contains a large hydrophobic substrate-binding pocket (~400 Å3) and utilizes two conserved residues, Thr20 and Try194, to retain the substrate in a favorable orientation for catalytic transmethylation. The OPCMT_like MTs have a broad substrate scope and can accept diverse carboxylic acids enabling efficient production of methyl esters. They are widely (more than 10,000) distributed in microorganisms, including several well-known pathogens, whereas no related genes are found in humans. In vivo experiments implied that the OPCMT_like MTs was indispensable for M. neoaurum, suggesting that these proteins have important physiological functions.
Collapse
Affiliation(s)
- Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhiwei Hu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Linjun Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education & Abiochem Biotech Joint Center for Pharmaceutical Innovation, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Benben Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaowei Huang
- Department of Gastroenterology and Hepatology, Tongji Hospital affiliated to Huazhong University of Science and Technology, Wuhan430071, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education & Abiochem Biotech Joint Center for Pharmaceutical Innovation, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| |
Collapse
|
10
|
Akbar N, Khan NA, Giddey AD, Soares NC, Alharbi AM, Alfahemi H, Siddiqui R. Selected Gut Bacteria from Water Monitor Lizard Exhibit Effects against Pathogenic Acanthamoeba castellanii Belonging to the T4 Genotype. Microorganisms 2023; 11:microorganisms11041072. [PMID: 37110494 PMCID: PMC10142573 DOI: 10.3390/microorganisms11041072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Water monitor lizards (WMLs) reside in unhygienic and challenging ecological surroundings and are routinely exposed to various pathogenic microorganisms. It is possible that their gut microbiota produces substances to counter microbial infections. Here we determine whether selected gut bacteria of water monitor lizards (WMLs) possess anti-amoebic properties using Acanthamoeba castellanii of the T4 genotype. Conditioned media (CM) were prepared from bacteria isolated from WML. The CM were tested using amoebicidal, adhesion, encystation, excystation, cell cytotoxicity and amoeba-mediated host cell cytotoxicity assays in vitro. Amoebicidal assays revealed that CM exhibited anti-amoebic effects. CM inhibited both excystation and encystation in A. castellanii. CM inhibited amoebae binding to and cytotoxicity of host cells. In contrast, CM alone showed limited toxic effects against human cells in vitro. Mass spectrometry revealed several antimicrobials, anticancer, neurotransmitters, anti-depressant and other metabolites with biological functions. Overall, these findings imply that bacteria from unusual places, such as WML gut, produce molecules with anti-acanthamoebic capabilities.
Collapse
Affiliation(s)
- Noor Akbar
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Alexander D Giddey
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad M Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, P.O. Box. 1988, Al-Baha 65799, Saudi Arabia
| | - Ruqaiyyah Siddiqui
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
11
|
Lee JA, Ahn JH, Kim GB, Choi S, Kim JY, Lee SY. Metabolic engineering of Mannheimia succiniciproducens for malic acid production using dimethylsulfoxide as an electron acceptor. Biotechnol Bioeng 2023; 120:203-215. [PMID: 36128631 DOI: 10.1002/bit.28242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals.
Collapse
Affiliation(s)
- Jong An Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jung Ho Ahn
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gi Bae Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sol Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ji Yeon Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,BioInformatics Research Center and BioProcess Engineering Research Center, KAIST, Daejeon, Korea
| |
Collapse
|
12
|
Kim S, Lee HK, Jung GY. Identification Process and Physiological Properties of Transporters of Carboxylic Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Wu Y, Li W, Wang L, Wu Y, Wang Y, Wang Y, Meng H. Enhancing the selective synthesis of butyrate in microbial electrosynthesis system by gas diffusion membrane composite biocathode. CHEMOSPHERE 2022; 308:136088. [PMID: 36029854 DOI: 10.1016/j.chemosphere.2022.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The reduction of carbon dioxide (CO2) to high value-added multi-carbon compounds at the cathode is an emerging application of microbial electrosynthesis system (MES). In this study, a composite cathode consisting of hollow fiber membrane (HFM) and the carbon felt is designed to enhance the CO2 mass transfer of the cathode. The result shows that the main products are acetate and butyrate without other substances. The electrochemical performance of the electrode is significantly improved after biofilm becomes matures. The composite cathode significantly reduces the "threshold" for the synthesis of butyrate. Moreover, CO2 is dissolved and protons are consumed by synthesizing volatile fatty acids (VFAs) to maintain a stable pH inside the composite electrode. The synthesis mechanism of butyrate is that CO2 is converted sequentially into acetate and butyrate. The microenvironment of the composite electrode enriches Firmicute. This composite electrode provides a novel strategy for regulating the microenvironment.
Collapse
Affiliation(s)
- Yun Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China.
| | - Weichao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Lutian Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Material Science and Engineering, TianGong University, Tianjin, 300387, China
| | - Yuchong Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yufeng Wang
- Tianjin Urban Construction Design Institute, Tianjin, 300122, China
| | - Hongyu Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| |
Collapse
|
14
|
Deutzmann JS, Kracke F, Gu W, Spormann AM. Microbial Electrosynthesis of Acetate Powered by Intermittent Electricity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16073-16081. [PMID: 36260660 DOI: 10.1021/acs.est.2c05085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial electrosynthesis (MES) of acetate is a process using electrical energy to reduce CO2 to acetic acid in an integrated bioelectrochemical system. MES powered by excess renewable electricity produces carbon-neutral acetate while benefitting from inexpensive but intermittent energy sources. Interruptions in electricity supply also cause energy limitation and starvation of the microbial cells performing MES. Here, we studied the effect of intermittent electricity supply on the performance of hydrogen-mediated MES of acetate. Thermoanaerobacter kivui produced acetic acid for more than 4 months from intermittent electricity supplied in 12 h on-off cycles in a semicontinuously-fed MES system. After current interruptions, hydrogen utilization and acetate synthesis rates were severely diminished. They did not recover to the steady-state rates of continuous MES within the 12 h current-on period under most conditions. Accumulating high product (acetate) concentration exacerbated this effect and prolonged recovery. However, supply of a low background current of 1-5% of the maximum current during "off-times" reduced the impact of current interruptions on subsequent MES performance. This study presents sustained MES at a rate of up to 2 mM h-1 acetate at an average concentration of 60-90 mM by a pure thermophilic microbial culture powered by intermittent electricity. We identified product inhibition of accumulating acetic acid as a key challenge to improving the efficiency of intermittently powered MES.
Collapse
Affiliation(s)
- Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
| | - Frauke Kracke
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
| | - Wenyu Gu
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
- Department of Chemical Engineering, Stanford University, Stanford94305-4020California, United States
- Novo Nordisk Foundation CO2 Research Center, Aarhus University, Aarhus8000, Denmark
| |
Collapse
|
15
|
Gazzola G, Maria Braguglia C, Crognale S, Gallipoli A, Mininni G, Piemonte V, Rossetti S, Tonanzi B, Gianico A. Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:328-338. [PMID: 35907330 DOI: 10.1016/j.wasman.2022.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
New technologies development and renewable source exploitation are key tools to realize the European Green Deal and to boost the bio-based economy. In this context, fermentation of organic residues as food waste is an efficient method to obtain marketable products such as carboxylic acids widely applied in industrial production. Under favourable thermodynamic conditions, short chain fatty acids deriving from primary fermentation could be biologically converted into medium-chain fatty acids as caproate via chain elongation (CE) process, by using ethanol or lactate as electron donors. This study evaluates the effectivity of producing caproate from Food Waste extract rich in organics with in situ electron donor production. The test carried out at OLR 15 gCOD L-1d-1 showed high Volatile Fatty Acids (from acetic to caproic acid) yields (0.37 g g-1CODfed), with a maximum caproate concentration of 8 g L-1. The associated microbiome was composed by lactate-producing bacteria (Corynebacterium, Lactobacillus, and Olsenella) and by chain elongators (Clostridiaceae and Caproiciproducens). By stressing the system with OLR increase up to 20 gCOD L-1d-1, the CE process was inhibited by the high concentration of caproate (low occurrence of Clostridiaceae and Caproiciproducens). Nevertheless, after few days of stop-feeding regime imposed to the system, the microbiome restored its capability to proceed with lactate-based CE pathways. Different batch tests carried out with the inhibited biomass at increasing initial caproate concentration confirmed its impact on lactate utilization kinetics.
Collapse
Affiliation(s)
- Giulio Gazzola
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Camilla Maria Braguglia
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Agata Gallipoli
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Giuseppe Mininni
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Vincenzo Piemonte
- Faculty of Engineering, University Campus Bio-Medico, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Barbara Tonanzi
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Andrea Gianico
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy.
| |
Collapse
|
16
|
Yao X, Liu P, Chen B, Wang X, Tao F, Lin Z, Yang X. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH. Microb Cell Fact 2022; 21:68. [PMID: 35459210 PMCID: PMC9026648 DOI: 10.1186/s12934-022-01795-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background During fermentation, industrial microorganisms encounter multiple stresses that inhibit cell growth and decrease fermentation yields, in particular acid stress, which is due to the accumulation of acidic metabolites in the fermentation medium. Although the addition of a base to the medium can counteract the effect of acid accumulation, the engineering of acid-tolerant strains is considered a more intelligent and cost-effective solution. While synthetic biology theoretically provides a novel approach for devising such tolerance modules, in practice it is difficult to assemble stress-tolerance modules from hundreds of stress-related genes. Results In this study, we designed a set of synthetic acid-tolerance modules for fine-tuning the expression of multi-component gene blocks comprising a member of the proton-consuming acid resistance system (gadE), a periplasmic chaperone (hdeB), and reactive oxygen species (ROS) scavengers (sodB and katE). Directed evolution was used to construct an acid-responsive asr promoter library, from which four variants were selected and used in the synthetic modules. The module variants were screened in a stepwise manner under mild acidic conditions (pH 5–6), first by cell growth using the laboratory Escherichia coli strain MG1655 cultured in microplates, and then by lysine production performance using the industrial lysine-producing E. coli strain MG1655 SCEcL3 cultured first in multiple 10-mL micro-bioreactors, and then in 1.3-L parallel bioreactors. The procedure resulted in the identification of a best strain with lysine titer and yield at pH 6.0 comparable to the parent strain at pH 6.8. Conclusion Our results demonstrate a promising synthetic-biology strategy to enhance the growth robustness and productivity of E. coli upon the mildly acidic conditions, in both a general lab strain MG1655 and an industrial lysine-producing strain SCEcL3, by using the stress-responsive synthetic acid-tolerance modules comprising a limited number of genes. This study provides a reliable and efficient method for achieving synthetic modules of interest, particularly in improving the robustness and productivity of industrial strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01795-4.
Collapse
Affiliation(s)
- Xurong Yao
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Peng Liu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Bo Chen
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Xiaoyan Wang
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
17
|
Chin JHC, Samian MR, Normi YM. Characterization of polyhydroxyalkanoate production capacity, composition and weight synthesized by Burkholderia cepacia JC-1 from various carbon sources. Heliyon 2022; 8:e09174. [PMID: 35368536 PMCID: PMC8971576 DOI: 10.1016/j.heliyon.2022.e09174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbial polymers that have received widespread attention in recent decades as potential alternatives to some petrochemical-based plastics. However, widespread use of PHA is often impeded by its cost of production. Therefore, the search for and systematic investigation of versatile microbial PHA producers capable of using various carbon sources, even in the form of animal fats, for PHA biosynthesis is desirable. This study highlights the PHA production capacity, monomer composition and molecular weight synthesized by Burkholderia cepacia JC-1, a locally isolated strain from soil, from various carbon sources. In the category of simple sugars and plant oils, the use of glucose and palm oil at C:N ratio of 40 resulted in the highest accumulation of 52 wt% and 36 wt% poly(3-hydroxybutyrate) [P(3HB)] homopolymer and dry cell weight of 2.56 g/L and 3.17 g/L, respectively. Interestingly, B. cepacia JC-1 was able to directly utilize animal-derived lipid in the form of crude and extracted chicken fat, resulting in appreciable dry cell weight and PHA contents of up to 3.19 g/L and 47 wt% respectively, surpassing even that of palm oil in the group of triglycerides as substrates. The presence of antibiotics (streptomycin) in cultivation medium did not significantly affect cell growth and polymer production. The supply of sodium pentanoate as a co-substrate resulted in the incorporation of 3-hydroxyvalerate (3HV) monomer at fractions up to 37 mol%. The molecular weight of polymers produced from glucose, palm oil and chicken fat were in the range of 991–2118 kDa, higher than some reported studies involving native strains. The results from this study form an important basis for possible improvements in using B. cepacia JC-1 and crude chicken fats in solid form for PHA production in the future.
Collapse
Affiliation(s)
- Julian Hock-Chye Chin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mohd Razip Samian
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Jayakody LN, Chinmoy B, Turner TL. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. BIORESOURCE TECHNOLOGY 2022; 346:126614. [PMID: 34954359 DOI: 10.1016/j.biortech.2021.126614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/26/2023]
Abstract
Lignocellulosic biomass-derived fuels, chemicals, and materials are promising sustainable solutions to replace the current petroleum-based production. The direct microbial conversion of thermos-chemically pretreated lignocellulosic biomass is hampered by the presence of highly toxic chemical compounds. Also, thermo-catalytic upgrading of lignocellulosic biomass generates wastewater that contains heterogeneous toxic chemicals, a mixture of unutilized carbon. Metabolic engineering efforts have primarily focused on the conversion of carbohydrates in lignocellulose biomass; substantial opportunities exist to harness value from toxic lignocellulose-derived toxic compounds. This article presents the comprehensive metabolic routes and tolerance mechanisms to develop robust synthetic microbial cell factories to valorize the highly toxic compounds to advanced-platform chemicals. The obtained platform chemicals can be used to manufacture high-value biopolymers and biomaterials via a hybrid biochemical approach for replacing petroleum-based incumbents. The proposed strategy enables a sustainable bio-based materials economy by microbial biofunneling of lignocellulosic biomass-derived toxic molecules, an untapped biogenic carbon.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Baroi Chinmoy
- Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, IL, USA
| | - Timothy L Turner
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
20
|
Loss of the acetate switch in Vibrio vulnificus enhances predation defence against Tetrahymena pyriformis. Appl Environ Microbiol 2021; 88:e0166521. [PMID: 34731052 PMCID: PMC8788688 DOI: 10.1128/aem.01665-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with antipredation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defense mechanisms. To identify antipredator strategies, 13 V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan Tetrahymena pyriformis, and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which are toxic to T. pyriformis. As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete conditions were compared. This analysis revealed that ENV1 ferments pyruvate and the resultant acetyl-CoA leads to acetate synthesis under aerobic conditions, a hallmark of overflow metabolism. The anaerobic respiration global regulator arcA was upregulated when iron was available. An ΔarcA deletion mutant of ENV1 accumulated less acetate and, importantly, was sensitive to grazing by T. pyriformis. Based on the transcriptome response and quantification of metabolites, we conclude that ENV1 has adapted to overflow metabolism and has lost a control switch that shifts metabolism from acetate excretion to acetate assimilation, enabling it to excrete acetate continuously. We show that overflow metabolism and the acetate switch contribute to prey-predator interactions. IMPORTANCE Bacteria in the environment, including Vibrio spp., interact with protozoan predators. To defend against predation, bacteria evolve antipredator mechanisms ranging from changing morphology, biofilm formation, and secretion of toxins or virulence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defense strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is known about the defense mechanisms V. vulnificus expresses against predation. Here, we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism, enabling the production of excess organic acid that is toxic to the protozoan predator T. pyriformis. This is a previously unknown mechanism of predation defense that protects against protozoan predators.
Collapse
|
21
|
Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several organic acids have been indicated among the top value chemicals from biomass. Lignocellulose is among the most attractive feedstocks for biorefining processes owing to its high abundance and low cost. However, its highly complex nature and recalcitrance to biodegradation hinder development of cost-competitive fermentation processes. Here, current progress in development of single-pot fermentation (i.e., consolidated bioprocessing, CBP) of lignocellulosic biomass to high value organic acids will be examined, based on the potential of this approach to dramatically reduce process costs. Different strategies for CBP development will be considered such as: (i) design of microbial consortia consisting of (hemi)cellulolytic and valuable-compound producing strains; (ii) engineering of microorganisms that combine biomass-degrading and high-value compound-producing properties in a single strain. The present review will mainly focus on production of organic acids with application as building block chemicals (e.g., adipic, cis,cis-muconic, fumaric, itaconic, lactic, malic, and succinic acid) since polymer synthesis constitutes the largest sector in the chemical industry. Current research advances will be illustrated together with challenges and perspectives for future investigations. In addition, attention will be dedicated to development of acid tolerant microorganisms, an essential feature for improving titer and productivity of fermentative production of acids.
Collapse
|
22
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
23
|
Lacroux J, Seira J, Trably E, Bernet N, Steyer JP, van Lis R. Mixotrophic Growth of Chlorella sorokiniana on Acetate and Butyrate: Interplay Between Substrate, C:N Ratio and pH. Front Microbiol 2021; 12:703614. [PMID: 34276636 PMCID: PMC8283676 DOI: 10.3389/fmicb.2021.703614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Microalgae can be cultivated on waste dark fermentation effluents containing volatile fatty acids (VFA) such as acetate or butyrate. These VFA can however inhibit microalgae growth at concentrations above 0.5-1 gC.L-1. This study used the model strain Chlorella sorokiniana to investigate the effects of acetate or butyrate concentration on biomass growth rates and yields alongside C:N:P ratios and pH control. Decreasing undissociated acid levels by raising the initial pH to 8.0 allowed growth without inhibition up to 5 gC.L-1 VFAs. However, VFA concentration strongly affected biomass yields irrespective of pH control or C:N:P ratios. Biomass yields on 1.0 gC.L-1 acetate were around 1.3-1.5 gC.gC -1 but decreased by 26-48% when increasing initial acetate to 2.0 gC.L-1. This was also observed for butyrate with yields decreasing up to 25%. This decrease in yield in suggested to be due to the prevalence of heterotrophic metabolism at high organic acid concentration, which reduced the amount of carbon fixed by autotrophy. Finally, the effects of C:N:P on biomass, lipids and carbohydrates production dynamics were assessed using a mixture of both substrates. In nutrient replete conditions, C. sorokiniana accumulated up to 20.5% carbohydrates and 16.4% lipids while nutrient limitation triggered carbohydrates accumulation up to 45.3%.
Collapse
Affiliation(s)
- Julien Lacroux
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Université de Montpellier, Narbonne, France
| | - Jordan Seira
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Université de Montpellier, Narbonne, France
| | - Eric Trably
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Université de Montpellier, Narbonne, France
| | - Nicolas Bernet
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Université de Montpellier, Narbonne, France
| | - Jean-Philippe Steyer
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Université de Montpellier, Narbonne, France
| | - Robert van Lis
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Université de Montpellier, Narbonne, France
| |
Collapse
|
24
|
Inhibitory mechanism of cell-free supernatants of Lactobacillus plantarum on Proteus mirabilis and influence of the expression of histamine synthesis-related genes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Allaart MT, Stouten GR, Sousa DZ, Kleerebezem R. Product Inhibition and pH Affect Stoichiometry and Kinetics of Chain Elongating Microbial Communities in Sequencing Batch Bioreactors. Front Bioeng Biotechnol 2021; 9:693030. [PMID: 34235138 PMCID: PMC8256265 DOI: 10.3389/fbioe.2021.693030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic microbial communities can produce carboxylic acids of medium chain length (e.g., caproate, caprylate) by elongating short chain fatty acids through reversed β-oxidation. Ethanol is a common electron donor for this process. The influence of environmental conditions on the stoichiometry and kinetics of ethanol-based chain elongation remains elusive. Here, a sequencing batch bioreactor setup with high-resolution off-gas measurements was used to identify the physiological characteristics of chain elongating microbial communities enriched on acetate and ethanol at pH 7.0 ± 0.2 and 5.5 ± 0.2. Operation at both pH-values led to the development of communities that were highly enriched (>50%, based on 16S rRNA gene amplicon sequencing) in Clostridium kluyveri related species. At both pH-values, stably performing cultures were characterized by incomplete substrate conversion and decreasing biomass-specific hydrogen production rates during an operational cycle. The process stoichiometries obtained at both pH-values were different: at pH 7.0, 71 ± 6% of the consumed electrons were converted to caproate, compared to only 30 ± 5% at pH 5.5. Operating at pH 5.5 led to a decrease in the biomass yield, but a significant increase in the biomass-specific substrate uptake rate, suggesting that the organisms employ catabolic overcapacity to deal with energy losses associated to product inhibition. These results highlight that chain elongating conversions rely on a delicate balance between substrate uptake- and product inhibition kinetics.
Collapse
Affiliation(s)
| | | | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
26
|
Caccalano MN, Dilarri G, Zamuner CFC, Domingues DS, Ferreira H. Hexanoic acid: a new potential substitute for copper-based agrochemicals against citrus canker. J Appl Microbiol 2021; 131:2488-2499. [PMID: 34008224 DOI: 10.1111/jam.15125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023]
Abstract
AIMS The aim of the study is to evaluate hexanoic acid (HA) as an alternative to manage citrus canker. METHODS AND RESULTS The minimal growth inhibitory concentration of HA against Xanthomonas citri subsp. citri was determined at 2·15 mmol l-1 using a respiratory activity assay. Growth curves at different pH values showed that growth inhibition was not due to media acidification induced by HA. The germination rate and root elongation of Lactuca sativa seeds exposed to different concentrations of HA (varying from 0·86 to 5·16 mmol l-1 ) were assessed to screen for phytotoxicity. The acid exhibited low phytotoxicity for L. sativa at 1·29 and 2·58 mmol l-1 . To evaluate the ability of HA to protect citrus against X. citri infection, leaves of Citrus sinensis were sprayed with the acid and subsequently challenged with X. citri. HA at 3·44 mmol l-1 was able to protect citrus against infection, showing a reduction of three orders of magnitude in the number of citrus canker lesions per cm2 when compared to the untreated negative control. CONCLUSION HA is a potential alternative to copper for citrus canker management. SIGNIFICANCE AND IMPACT OF THE STUDY HA inhibits X. citri growth, exhibits low phytotoxicity and is an alternative to copper for the protection of citrus plants against bacterial infection.
Collapse
Affiliation(s)
- M N Caccalano
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - G Dilarri
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - C F C Zamuner
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - D S Domingues
- Department of Biodiversity, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - H Ferreira
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
27
|
Analysis of the response of the cell membrane of Saccharomyces cerevisiae during the detoxification of common lignocellulosic inhibitors. Sci Rep 2021; 11:6853. [PMID: 33767301 PMCID: PMC7994549 DOI: 10.1038/s41598-021-86135-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
Gaining an in-depth understanding of the response of Saccharomyces cerevisiae to the different inhibitors generated during the pretreatment of lignocellulosic material is driving the development of new strains with higher inhibitor tolerances. The objective of this study is to assess, using flow cytometry, how three common inhibitors (vanillin, furfural, and acetic acid) affect the membrane potential, the membrane permeability and the concentration of reactive oxygen species (ROS) during the different fermentations. The membrane potential decreased during the detoxification phase and reflected on the different mechanisms of the toxicity of the inhibitors. While vanillin and furfural caused a metabolic inhibition and a gradual depolarization, acetic acid toxicity was related to fast acidification of the cytosol, causing an immediate depolarization. In the absence of acetic acid, ethanol increased membrane permeability, indicating a possible acquired tolerance to ethanol due to an adaptive response to acetic acid. The intracellular ROS concentration also increased in the presence of the inhibitors, indicating oxidative stress. Measuring these features with flow cytometry allows a real-time assessment of the stress of a cell culture, which can be used in the development of new yeast strains and to design new propagation strategies to pre-adapt the cell cultures to the inhibitors.
Collapse
|
28
|
Fletcher E, Mercurio K, Walden EA, Baetz K. A yeast chemogenomic screen identifies pathways that modulate adipic acid toxicity. iScience 2021; 24:102327. [PMID: 33889823 PMCID: PMC8050732 DOI: 10.1016/j.isci.2021.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
Adipic acid production by yeast fermentation is gaining attention as a renewable source of platform chemicals for making nylon products. However, adipic acid toxicity inhibits yeast growth and fermentation. Here, we performed a chemogenomic screen in Saccharomyces cerevisiae to understand the cellular basis of adipic acid toxicity. Our screen revealed that KGD1 (a key gene in the tricarboxylic acid cycle) deletion improved tolerance to adipic acid and its toxic precursor, catechol. Conversely, disrupting ergosterol biosynthesis as well as protein trafficking and vacuolar transport resulted in adipic acid hypersensitivity. Notably, we show that adipic acid disrupts the Membrane Compartment of Can1 (MCC) on the plasma membrane and impacts endocytosis. This was evidenced by the rapid internalization of Can1 for vacuolar degradation. As ergosterol is an essential component of the MCC and protein trafficking mechanisms are required for endocytosis, we highlight the importance of these cellular processes in modulating adipic acid toxicity. Deletion of the TCA cycle gene KGD1 improves tolerance to adipic acid and catechol Ergosterol and Pdr12 play non-overlapping roles protecting cell from adipic acid Adipic acid-induced plasma membrane localization of Pdr12 is independent of ergosterol Adipic acid disrupts the Membrane Compartment of Can1 (MCC) and induces endocytosis
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kevin Mercurio
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Elizabeth A. Walden
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Corresponding author
| |
Collapse
|
29
|
Peh E, Kittler S, Seinige D, Valero A, Kehrenberg C. Adaptation of Campylobacter field isolates to propionic acid and sorbic acid is associated with fitness costs. J Appl Microbiol 2021; 131:1749-1761. [PMID: 33683781 DOI: 10.1111/jam.15057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
AIMS To reduce the burden of Campylobacter at different stages of the food chain, recent studies have shown the effectiveness of organic acids as a risk mitigation strategy. However, very little is known about possible adaptation responses of Campylobacter that lead to reduced susceptibility to organic acids. Here we investigated the adaptive responses of Campylobacter field isolates to organic acids and estimated the fitness costs. METHODS AND RESULTS Exposure of two Campylobacter jejuni and one Campylobacter coli isolate to subinhibitory concentrations of propionic acid or sorbic acid resulted in twofold to fourfold increased minimal inhibitory concentration values for the adapted variants. With one exception, the decreased susceptibility was stable in at least 10 successive subcultures without selection pressure. Growth competition experiments revealed a reduced fitness of adapted variants compared to the wild-type isolates. A linear regression model allowed an estimation of the fitness cost. Growth kinetics experiments showed significantly prolonged lag phases in five of six adapted isolates while there was not a direct correlation in the maximum growth rates compared to the wild-type isolates. CONCLUSIONS The results of the study showed that a stepwise adaptation of Campylobacter to organic acids is possible, but at the detriment of changes in growth behaviour and reduced fitness. SIGNIFICANCE AND IMPACT OF THE STUDY The study contributes to the understanding of adaptive responses of Campylobacter to organic acids treatments, for example, as part of risk mitigation strategies.
Collapse
Affiliation(s)
- E Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - S Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - D Seinige
- Lower Saxony State Office for Consumer Protection and Food Safety, Wardenburg, Germany
| | - A Valero
- Department of Food Science and Technology, University of Cordoba, Agrifood Campus of International, Córdoba, Spain
| | - C Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
30
|
Adjusting Organic Load as a Strategy to Direct Single-Stage Food Waste Fermentation from Anaerobic Digestion to Chain Elongation. Processes (Basel) 2020. [DOI: 10.3390/pr8111487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.
Collapse
|
31
|
Pereira R, Mohamed ET, Radi MS, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. Proc Natl Acad Sci U S A 2020; 117:27954-27961. [PMID: 33106428 PMCID: PMC7668050 DOI: 10.1073/pnas.2013044117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Toxicity from the external presence or internal production of compounds can reduce the growth and viability of microbial cell factories and compromise productivity. Aromatic compounds are generally toxic for microorganisms, which makes their production in microbial hosts challenging. Here we use adaptive laboratory evolution to generate Saccharomyces cerevisiae mutants tolerant to two aromatic acids, coumaric acid and ferulic acid. The evolution experiments were performed at low pH (3.5) to reproduce conditions typical of industrial processes. Mutant strains tolerant to levels of aromatic acids near the solubility limit were then analyzed by whole genome sequencing, which revealed prevalent point mutations in a transcriptional activator (Aro80) that is responsible for regulating the use of aromatic amino acids as the nitrogen source. Among the genes regulated by Aro80, ESBP6 was found to be responsible for increasing tolerance to aromatic acids by exporting them out of the cell. Further examination of the native function of Esbp6 revealed that this transporter can excrete fusel acids (byproducts of aromatic amino acid catabolism) and this role is shared with at least one additional transporter native to S. cerevisiae (Pdr12). Besides conferring tolerance to aromatic acids, ESBP6 overexpression was also shown to significantly improve the secretion in coumaric acid production strains. Overall, we showed that regulating the activity of transporters is a major mechanism to improve tolerance to aromatic acids. These findings can be used to modulate the intracellular concentration of aromatic compounds to optimize the excretion of such products while keeping precursor molecules inside the cell.
Collapse
Affiliation(s)
- Rui Pereira
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Elsayed T Mohamed
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Mohammad S Radi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Adam M Feist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
32
|
Multiplex Design of the Metabolic Network for Production of l-Homoserine in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.01477-20. [PMID: 32801175 PMCID: PMC7531971 DOI: 10.1128/aem.01477-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/01/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, the bottlenecks that sequentially limit l-homoserine biosynthesis were identified and resolved, based on rational and efficient metabolic-engineering strategies, coupled with CRISPR interference (CRISPRi)-based systematic analysis. The metabolomics data largely expanded our understanding of metabolic effects and revealed relevant targets for further modification to achieve better performance. The systematic analysis strategy, as well as metabolomics analysis, can be used to rationally design cell factories for the production of highly valuable chemicals. l-Homoserine, which is one of the few amino acids that is not produced on a large scale by microbial fermentation, plays a significant role in the synthesis of a series of valuable chemicals. In this study, systematic metabolic engineering was applied to target Escherichia coli W3110 for the production of l-homoserine. Initially, a basic l-homoserine producer was engineered through the strategies of overexpressing thrA (encoding homoserine dehydrogenase), removing the degradative and competitive pathways by knocking out metA (encoding homoserine O-succinyltransferase) and thrB (encoding homoserine kinase), reinforcing the transport system, and redirecting the carbon flux by deleting iclR (encoding the isocitrate lyase regulator). The resulting strain constructed by these strategies yielded 3.21 g/liter of l-homoserine in batch cultures. Moreover, based on CRISPR-Cas9/dCas9 (nuclease-dead Cas9)-mediated gene repression for 50 genes, the iterative genetic modifications of biosynthesis pathways improved the l-homoserine yield in a stepwise manner. The rational integration of glucose uptake and recovery of l-glutamate increased l-homoserine production to 7.25 g/liter in shake flask cultivation. Furthermore, the intracellular metabolic analysis further provided targets for strain modification by introducing the anaplerotic route afforded by pyruvate carboxylase to oxaloacetate formation, which resulted in accumulating 8.54 g/liter l-homoserine (0.33 g/g glucose, 62.4% of the maximum theoretical yield) in shake flask cultivation. Finally, a rationally designed strain gave 37.57 g/liter l-homoserine under fed-batch fermentation, with a yield of 0.31 g/g glucose. IMPORTANCE In this study, the bottlenecks that sequentially limit l-homoserine biosynthesis were identified and resolved, based on rational and efficient metabolic-engineering strategies, coupled with CRISPR interference (CRISPRi)-based systematic analysis. The metabolomics data largely expanded our understanding of metabolic effects and revealed relevant targets for further modification to achieve better performance. The systematic analysis strategy, as well as metabolomics analysis, can be used to rationally design cell factories for the production of highly valuable chemicals.
Collapse
|
33
|
Owusu-Agyeman I, Plaza E, Cetecioglu Z. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 112:30-39. [PMID: 32497899 DOI: 10.1016/j.wasman.2020.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Volatile fatty acids (VFAs) are intermediates of anaerobic digestion with high value and wide range of usage. Co-digestion of sewage sludge and external organic waste (OW) for VFA production can help achieve both resource recovery and ensure sustainable and innovative waste management. In view of this, the effect of substrate proportions on VFA production from co-digestion of primary sewage sludge and OW is studied. Long-term operation in a semi-continuous reactor was performed to assess the resilience of such a system and the VFA-rich effluent was tested for its ability to be used as carbon source for denitrification. Co-digestion was initially carried out in batch reactors with OW proportion of 0%, 25%, 50%, 75%, 100% in terms of COD and scaled up in a semi-continuous reactor operation with 50% OW. In the short-term operation in the batch mode, acetic acid dominated, however, increasing OW fraction resulted in increased valeric and caproic acid production. Moreover, in the long-term semi-continuous operation, caproic acid dominated, accounting for ≈55% of VFAs. The VFA-rich effluent from the semi-continuous reactor achieved the highest denitrification rate as a carbon source when compared with acetic acid and methanol. The results demonstrate that co-fermentation can increase VFA yield and shift products from acetic acid to caproic acid in long-term operation and the VFAs can be used within wastewater treatment plants to close the loop.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
34
|
Open microbiome dominated by Clostridium and Eubacterium converts methanol into i-butyrate and n-butyrate. Appl Microbiol Biotechnol 2020; 104:5119-5131. [PMID: 32248436 DOI: 10.1007/s00253-020-10551-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022]
Abstract
Isobutyrate (i-butyrate) is a versatile platform chemical, whose acid form is used as a precursor of plastic and emulsifier. It can be produced microbially either using genetically engineered organisms or via microbiomes, in the latter case starting from methanol and short-chain carboxylates. This opens the opportunity to produce i-butyrate from non-sterile feedstocks. Little is known on the ecology and process conditions leading to i-butyrate production. In this study, we steered i-butyrate production in a bioreactor fed with methanol and acetate under various conditions, achieving maximum i-butyrate productivity of 5.0 mM day-1, with a concurrent production of n-butyrate of 7.9 mM day-1. The production of i-butyrate was reversibly inhibited by methanogenic inhibitor 2-bromoethanesulfonate. The microbial community data revealed the co-dominance of two major OTUs during co-production of i-butyrate and n-butyrate in two distinctive phases throughout a period of 54 days and 28 days, respectively. The cross-comparison of product profile with microbial community composition suggests that the relative abundance of Clostridium sp. over Eubacterium sp. is correlated with i-butyrate productivity over n-butyrate productivity.
Collapse
|
35
|
Lebeau J, Efromson JP, Lynch MD. A Review of the Biotechnological Production of Methacrylic Acid. Front Bioeng Biotechnol 2020; 8:207. [PMID: 32266236 PMCID: PMC7100375 DOI: 10.3389/fbioe.2020.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/22/2023] Open
Abstract
Industrial biotechnology can lead to new routes and potentially to more sustainable production of numerous chemicals. We review the potential of biobased routes from sugars to the large volume commodity, methacrylic acid, involving fermentation based bioprocesses. We cover the key progress over the past decade on direct and indirect fermentation based routes to methacrylic acid including both academic as well as patent literature. Finally, we take a critical look at the potential of biobased routes to methacrylic acid in comparison with both incumbent as well as newer greener petrochemical based processes.
Collapse
Affiliation(s)
- Juliana Lebeau
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - John P Efromson
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
36
|
Fu X, Yang H, Pangestu F, Nikolau BJ. Failure to Maintain Acetate Homeostasis by Acetate-Activating Enzymes Impacts Plant Development. PLANT PHYSIOLOGY 2020; 182:1256-1271. [PMID: 31874860 PMCID: PMC7054878 DOI: 10.1104/pp.19.01162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 05/09/2023]
Abstract
The metabolic intermediate acetyl-CoA links anabolic and catabolic processes and coordinates metabolism with cellular signaling by influencing protein acetylation. In this study we demonstrate that in Arabidopsis (Arabidopsis thaliana), two distinctly localized acetate-activating enzymes, ACETYL-COA SYNTHETASE (ACS) in plastids and ACETATE NON-UTILIZING1 (ACN1) in peroxisomes, function redundantly to prevent the accumulation of excess acetate. In contrast to the near wild-type morphological and metabolic phenotypes of acs or acn1 mutants, the acs acn1 double mutant is delayed in growth and sterile, which is associated with hyperaccumulation of cellular acetate and decreased accumulation of acetyl-CoA-derived intermediates of central metabolism. Using multiple mutant stocks and stable isotope-assisted metabolic analyses, we demonstrate the twin metabolic origins of acetate from the oxidation of ethanol and the nonoxidative decarboxylation of pyruvate, with acetaldehyde being the common intermediate precursor of acetate. Conversion from pyruvate to acetate is activated under hypoxic conditions, and ACS recovers carbon that would otherwise be lost from the plant as ethanol. Plastid-localized ACS metabolizes cellular acetate and contributes to the de novo biosynthesis of fatty acids and Leu; peroxisome-localized ACN1 enables the incorporation of acetate into organic acids and amino acids. Thus, the activation of acetate in distinct subcellular compartments provides plants with the metabolic flexibility to maintain physiological levels of acetate and a metabolic mechanism for the recovery of carbon that would otherwise be lost as ethanol, for example following hypoxia.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Hannah Yang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Febriana Pangestu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
37
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
38
|
Zhang W, Zhang F, Li YX, Jiang Y, Zeng RJ. No difference in inhibition among free acids of acetate, propionate and butyrate on hydrogenotrophic methanogen of Methanobacterium formicicum. BIORESOURCE TECHNOLOGY 2019; 294:122237. [PMID: 31683454 DOI: 10.1016/j.biortech.2019.122237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Free volatile fatty acids such as free acetic acid (FAA) and free butyrate acid (FBA) are true inhibitors of hydrogenotrophic methanogens (HM) in mixed culture. However, their inhibitory effects on pure culture of HM remain unclear. In this study, a typical HM of Methanobacterium formicicum demonstrated no difference in toxicity conferred by FAA, free propionate acid (FPA), or FBA in regard to the specific methanogenic activity (SMA) based on the C50% (0.19, 0.17, and 0.23 g/L, respectively) and recoverable concentration values (0.97, 0.69, and 0.61 g/L, respectively). These results were within the same order of magnitude. The concentrations of FAA, FBA, and FPA all correlated well with the SMA values according to the inhibition model. Additionally, changes in the activity of the electron transport system also agreed well with the trend in the SMA variation. Together, the results of this study provide a benchmark to control methanogenesis during industrial applications.
Collapse
Affiliation(s)
- Wei Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fang Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong-Xin Li
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong Jiang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
39
|
Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 2019; 56:130-141. [DOI: 10.1016/j.ymben.2019.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
|
40
|
Han W, He P, Shao L, Lü F. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: A mini review. J Environ Sci (China) 2019; 86:50-64. [PMID: 31787190 DOI: 10.1016/j.jes.2019.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals. Chain elongation (CE) for production of medium-chain carboxylic acids (MCCAs, especially caproate, enanthate and caprylate) from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society. The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production. Additionally, the microbial characteristics of the CE process are surveyed and discussed. Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed, we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission. This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste, or even non-biodegradable waste (such as, plastics and rubbers). Meanwhile, the remaining scientific questions, unsolved problems, application potential and possible developments for this technology are discussed.
Collapse
Affiliation(s)
- Wenhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pinjing He
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Liming Shao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
41
|
Streamlined assessment of membrane permeability and its application to membrane engineering of Escherichia coli for octanoic acid tolerance. ACTA ACUST UNITED AC 2019; 46:843-853. [DOI: 10.1007/s10295-019-02158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Abstract
The economic viability of bio-production processes is often limited by damage to the microbial cell membrane and thus there is a demand for strategies to increase the robustness of the cell membrane. Damage to the microbial membrane is also a common mode of action by antibiotics. Membrane-impermeable DNA-binding dyes are often used to assess membrane integrity in conjunction with flow cytometry. We demonstrate that in situ assessment of the membrane permeability of E. coli to SYTOX Green is consistent with flow cytometry, with the benefit of lower experimental intensity, lower cost, and no need for a priori selection of sampling times. This method is demonstrated by the characterization of four membrane engineering strategies (deletion of aas, deletion of cfa, increased expression of cfa, and deletion of bhsA) for their effect on octanoic acid tolerance, with the finding that deletion of bhsA increased tolerance and substantially decreased membrane leakage.
Collapse
|
42
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation. Molecules 2019; 24:E398. [PMID: 30678297 PMCID: PMC6384945 DOI: 10.3390/molecules24030398] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Environmental pressures caused by population growth and consumerism require the development of resource recovery from waste, hence a circular economy approach. The production of chemicals and fuels from organic waste using mixed microbial cultures (MMC) has become promising. MMC use the synergy of bio-catalytic activities from different microorganisms to transform complex organic feedstock, such as by-products from food production and food waste. In the absence of oxygen, the feedstock can be converted into biogas through the established anaerobic digestion (AD) approach. The potential of MMC has shifted to production of intermediate AD compounds as precursors for renewable chemicals. A particular set of anaerobic pathways in MMC fermentation, known as chain elongation, can occur under specific conditions producing medium chain carboxylic acids (MCCAs) with higher value than biogas and broader applicability. This review introduces the chain elongation pathway and other bio-reactions occurring during MMC fermentation. We present an overview of the complex feedstocks used, and pinpoint the main operational parameters for MCCAs production such as temperature, pH, loading rates, inoculum, head space composition, and reactor design. The review evaluates the key findings of MCCA production using MMC, and concludes by identifying critical research targets to drive forward this promising technology as a valorisation method for complex organic waste.
Collapse
Affiliation(s)
- Vicky De Groof
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Marta Coma
- Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Tom Arnot
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - David J Leak
- Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Ana B Lanham
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
44
|
Lee H, Sugiharto YEC, Lee H, Jeon W, Ahn J, Lee H. Biotransformation of dicarboxylic acids from vegetable oil–derived sources: current methods and suggestions for improvement. Appl Microbiol Biotechnol 2019; 103:1545-1555. [DOI: 10.1007/s00253-018-9571-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
|
45
|
Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Appl Microbiol Biotechnol 2018; 103:191-199. [DOI: 10.1007/s00253-018-9503-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
46
|
Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates. Appl Environ Microbiol 2018; 84:AEM.01285-18. [PMID: 30030228 DOI: 10.1128/aem.01285-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023] Open
Abstract
Fermentative production of many attractive biorenewable fuels and chemicals is limited by product toxicity in the form of damage to the microbial cell membrane. Metabolic engineering of the production organism can help mitigate this problem, but there is a need for identification and prioritization of the most effective engineering targets. Here, we use a set of previously characterized environmental Escherichia coli isolates with high tolerance and production of octanoic acid, a model membrane-damaging biorenewable product, as a case study for identifying and prioritizing membrane engineering strategies. This characterization identified differences in the membrane lipid composition, fluidity, integrity, and cell surface hydrophobicity from those of the lab strain MG1655. Consistent with previous publications, decreased membrane fluidity was associated with increased fatty acid production ability. Maintenance of high membrane integrity or longer membrane lipids seemed to be of less importance than fluidity. Cell surface hydrophobicity was also directly associated with fatty acid production titers, with the strength of this association demonstrated by plasmid-based expression of the multiple stress resistance outer membrane protein BhsA. This expression of bhsA was effective in altering hydrophobicity, but the direction and magnitude of the change differed between strains. Thus, additional strategies are needed to reliably engineer cell surface hydrophobicity. This work demonstrates the ability of environmental microbiological studies to impact the metabolic engineering design-build-test-learn cycle and possibly increase the economic viability of fermentative bioprocesses.IMPORTANCE The production of bulk fuels and chemicals in a bio-based fermentation process requires high product titers. This is often difficult to achieve, because many of the target molecules damage the membrane of the microbial cell factory. Engineering the composition of the membrane in order to decrease its vulnerability to this damage has proven to be an effective strategy for improving bioproduction, but additional strategies and engineering targets are needed. Here, we studied a small set of environmental Escherichia coli isolates that have higher production titers of octanoic acid, a model biorenewable chemical, than those of the lab strain MG1655. We found that membrane fluidity and cell surface hydrophobicity are strongly associated with improved octanoic acid production. Fewer genetic modification strategies have been demonstrated for tuning hydrophobicity relative to fluidity, leading to the conclusion that there is a need for expanding hydrophobicity engineering strategies in E. coli.
Collapse
|
47
|
Gao X, Yang X, Li J, Zhang Y, Chen P, Lin Z. Engineered global regulator H-NS improves the acid tolerance of E. coli. Microb Cell Fact 2018; 17:118. [PMID: 30053876 PMCID: PMC6064147 DOI: 10.1186/s12934-018-0966-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022] Open
Abstract
Background Acid stress is often encountered during industrial fermentation as a result of the accumulation of acidic metabolites. Acid stress increases the intracellular acidity and can cause DNA damage and denaturation of essential enzymes, thus leading to a decrease of growth and fermentation yields. Although acid stress can be relieved by addition of a base to the medium, fermentations with acid-tolerant strains are generally considered much more efficient and cost-effective. Results In this study, the global regulator H-NS was found to have significant influence on the acid tolerance of E. coli. The final OD600 of strains overexpressing H-NS increased by 24% compared to control, when cultured for 24 h at pH 4.5 using HCl as an acid agent. To further improve the acid tolerance, a library of H-NS was constructed by error-prone PCR and subjected to selection. Five mutants that conferred a significant growth advantage compared to the control strain were obtained. The final OD600 of strains harboring the five H-NS mutants was enhanced by 26–53%, and their survival rate was increased by 10- to 100-fold at pH 2.5. Further investigation showed that the improved acid tolerance of H-NS mutants coincides with the activation of multiple acid resistance mechanisms, in particular the glutamate- and glutamine-dependent acid resistance system (AR2). The improved acid tolerance of H-NS mutants was also demonstrated in media acidified by acetic acid and succinic acid, which are common acidic fermentation by-products or products. Conclusions The results obtained in this work demonstrate that the engineering of H-NS can enhance the acid tolerance of E. coli. More in general, this study shows the potential of the engineering of global regulators acting as repressors, such as H-NS, as a promising method to obtain phenotypes of interest. This approach could expand the spectrum of application of global transcription machinery engineering. Electronic supplementary material The online version of this article (10.1186/s12934-018-0966-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianxing Gao
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Jiahui Li
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Yan Zhang
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.,Shenzhen Agricultural Genomics Institute, China Academy of Agricultural Sciences, 7 Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Ping Chen
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China. .,School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
48
|
Roghair M, Liu Y, Adiatma JC, Weusthuis RA, Bruins ME, Buisman CJN, Strik DPBTB. Effect of n-Caproate Concentration on Chain Elongation and Competing Processes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:7499-7506. [PMID: 29910994 PMCID: PMC5997465 DOI: 10.1021/acssuschemeng.8b00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/13/2018] [Indexed: 05/26/2023]
Abstract
Chain elongation is an open-culture fermentation process that facilitates conversion of organic residues with an additional electron donor, such as ethanol, into valuable n-caproate. Open-culture processes are catalyzed by an undefined consortium of microorganisms which typically also bring undesired (competing) processes. Inhibition of competing processes, such as syntrophic ethanol oxidation, will lead to a more selective n-caproate production process. In this study, we investigated the effect of n-caproate concentration on the specific activity of chain elongation and competing processes using batch inhibition assays. With "synthetic medium sludge" (originally operating at 3.4 g/L n-caproate), syntrophic ethanol oxidation was proportionally inhibited by n-caproate until 45% inhibition at 20 g/L n-caproate. Hydrogenotrophic methanogenesis was for 58% inhibited at 20 g/L n-caproate. Chain elongation of volatile fatty acids (volatile fatty acid upgrading; the desired process), was completely inhibited at 20 g/L n-caproate with all tested sludge types. "Adapted sludge" (operating at 23.2 g/L n-caproate) showed a 10 times higher volatile fatty acid upgrading activity at 15 g/L n-caproate compared to "nonadapted sludge" (operating at 7.1 g/L n-caproate). This shows that open cultures do adapt to perform chain elongation at high n-caproate concentrations which likely inhibits syntrophic ethanol oxidation through hydrogenotrophic methanogenesis. As such, we provide supporting evidence that the formation of n-caproate inhibits syntrophic ethanol oxidation which leads to a more selective medium chain fatty acid production process.
Collapse
Affiliation(s)
- Mark Roghair
- Sub-department
of Environmental Technology, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Yuchen Liu
- Sub-department
of Environmental Technology, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Julius C. Adiatma
- Sub-department
of Environmental Technology, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Ruud A. Weusthuis
- Bioprocess
Engineering, Wageningen University &
Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marieke E. Bruins
- Wageningen
Food & Biobased Research, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Sub-department
of Environmental Technology, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - David P. B. T. B. Strik
- Sub-department
of Environmental Technology, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
49
|
Carbon flux to growth or polyhydroxyalkanoate synthesis under microaerophilic conditions is affected by fatty acid chain-length in Pseudomonas putida LS46. Appl Microbiol Biotechnol 2018; 102:6437-6449. [PMID: 29799090 DOI: 10.1007/s00253-018-9055-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
Economical production of medium-chain length polyhydroxyalkanoates (mcl-PHA) is dependent on efficient cultivation processes. This work describes growth and mcl-PHA synthesis characteristics of Pseudomonas putida LS46 when grown on medium-chain length fatty acids (octanoic acid) and lower-cost long-chain fatty acids (LCFAs, derived from hydrolyzed canola oil) in microaerophilic environments. Growth on octanoic acid ceased when the oxygen uptake rate was limited by the oxygen transfer rate, and mcl-PHA accumulated to 61.9% of the cell dry mass. From LCFAs, production of non-PHA cell mass continued at a rate of 0.36 g L-1 h-1 under oxygen-limited conditions, while mcl-PHA accumulated simultaneously to 31% of the cell dry mass. The titer of non-PHA cell mass from LCFAs at 14 h post-inoculation was double that obtained from octanoic acid in bioreactors operated with identical feeding and aeration conditions. While the productivity for octanoic acid was higher by 14 h, prolonged cultivation on LCFAs achieved similar productivity but with twice the PHA titer. Simultaneous co-feeding of each substrate demonstrated the continued cell growth under microaerophilic conditions characteristic of LCFAs, and the resulting polymer was dominant in C8 monomers. Furthermore, co-feeding resulted in improved PHA titer and volumetric productivity compared to either substrate individually. These results suggest that LCFAs improve growth of P. putida in oxygen-limited environments and could reduce production costs since more non-PHA cell mass, the cellular factories required to produce mcl-PHA and the most oxygen-intensive cellular process, can be produced for a given oxygen transfer rate.
Collapse
|
50
|
Tan Z, Yoon JM, Chowdhury A, Burdick K, Jarboe LR, Maranas CD, Shanks JV. Engineering of E. coli inherent fatty acid biosynthesis capacity to increase octanoic acid production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:87. [PMID: 29619083 PMCID: PMC5879999 DOI: 10.1186/s13068-018-1078-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND As a versatile platform chemical, construction of microbial catalysts for free octanoic acid production from biorenewable feedstocks is a promising alternative to existing petroleum-based methods. However, the bio-production strategy has been restricted by the low capacity of E. coli inherent fatty acid biosynthesis. In this study, a combination of integrated computational and experimental approach was performed to manipulate the E. coli existing metabolic network, with the objective of improving bio-octanoic acid production. RESULTS First, a customized OptForce methodology was run to predict a set of four genetic interventions required for production of octanoic acid at 90% of the theoretical yield. Subsequently, all the ten candidate proteins associated with the predicted interventions were regulated individually, as well as in contrast to the combination of interventions as suggested by the OptForce strategy. Among these enzymes, increased production of 3-hydroxy-acyl-ACP dehydratase (FabZ) resulted in the highest increase (+ 45%) in octanoic acid titer. But importantly, the combinatorial application of FabZ with the other interventions as suggested by OptForce further improved octanoic acid production, resulting in a high octanoic acid-producing E. coli strain +fabZ ΔfadE ΔfumAC ΔackA (TE10) (+ 61%). Optimization of TE10 expression, medium pH, and C:N ratio resulted in the identified strain producing 500 mg/L of C8 and 805 mg/L of total FAs, an 82 and 155% increase relative to wild-type MG1655 (TE10) in shake flasks. The best engineered strain produced with high selectivity (> 70%) and extracellularly (> 90%) up to 1 g/L free octanoic acid in minimal medium fed-batch culture. CONCLUSIONS This work demonstrates the effectiveness of integration of computational strain design and experimental characterization as a starting point in rewiring metabolism for octanoic acid production. This result in conjunction with the results of other studies using OptForce in strain design demonstrates that this strategy may be also applicable to engineering E. coli for other customized bioproducts.
Collapse
Affiliation(s)
- Zaigao Tan
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Jong Moon Yoon
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Anupam Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Kaitlin Burdick
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Laura R. Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Jacqueline V. Shanks
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| |
Collapse
|