1
|
Zhao Z, Zhao Y, Marotta F, Xamxidin M, Li H, Xu J, Hu B, Wu M. The microbial community structure and nitrogen cycle of high-altitude pristine saline lakes on the Qinghai-Tibetan plateau. Front Microbiol 2024; 15:1424368. [PMID: 39132143 PMCID: PMC11312105 DOI: 10.3389/fmicb.2024.1424368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 08/13/2024] Open
Abstract
The nitrogen (N) cycle is the foundation of the biogeochemistry on Earth and plays a crucial role in global climate stability. It is one of the most important nutrient cycles in high-altitude lakes. The biogeochemistry of nitrogen is almost entirely dependent on redox reactions mediated by microorganisms. However, the nitrogen cycling of microbial communities in the high-altitude saline lakes of the Qinghai-Tibet Plateau (QTP), the world's "third pole" has not been investigated extensively. In this study, we used a metagenomic approach to investigate the microbial communities in four high-altitude pristine saline lakes in the Altun mountain on the QTP. We observed that Proteobacteria, Bacteroidota, and Actinobacteriota were dominant in these lakes. We reconstructed 1,593 bacterial MAGs and 8 archaeal MAGs, 1,060 of which were found to contain nitrogen cycle related genes. Our analysis revealed that nitrite reduction, nitrogen fixation, and assimilatory nitrate reduction processes might be active in the lakes. Denitrification might be a major mechanism driving the potential nitrogen loss, while nitrification might be inactive. A wide variety of microorganisms in the lake, dominated by Proteobacteria, participate together in the nitrogen cycle. The prevalence of the dominant taxon Yoonia in these lakes may be attributed to its well-established nitrogen functions and the coupled proton dynamics. This study is the first to systematically investigate the structure and nitrogen function of the microbial community in the high-altitude pristine saline lakes in the Altun mountain on the QTP. As such, it contributes to a better comprehension of biogeochemistry of high-altitude saline lakes.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yuxiang Zhao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Federico Marotta
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Huan Li
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Junquan Xu
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Li X, Liu Q, Yu X, Zhang C, Liu M, Zhou X, Gu C, Wang M, Shao H, Li J, Jiang Y. Spatial pattern and co-occurrence network of microbial community in response to extreme environment of salt lakes on the Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20615-20630. [PMID: 36255574 DOI: 10.1007/s11356-022-23572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities are important components of alpine lakes, especially in extreme environments such as salt lakes. However, few studies have examined the co-occurrence network of microbial communities and various environmental factors in the water of salt lakes on the Qinghai-Tibet Plateau. From May to June 2019, nine samples from seven salt lakes with water salinity ranges from 13 to 267‰ on the Qinghai-Tibet Plateau were collected. There were great differences between low-salinity samples and high-salinity samples in the inorganic salt ion concentration, pH, and biodiversity. In addition, the microbial community sturcture in low-salinity samples and high-salinity samples differed, suggesting that each sample has its own specific species. The co-occurrence network suggests that salinity was the most important forcing factor. We believe that salinity and inorganic salt ions can result in differences in microbial community in different salt lakes. This sequencing survey of multiple salt lakes with various salinities on the Qinghai-Tibet Plateau enhances our understanding of the response of microbial communities to environmental heterogeneity.
Collapse
Affiliation(s)
- Xianrong Li
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiaowen Yu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chenru Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinhao Zhou
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 2661000, China
| | - Hongbing Shao
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiansen Li
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Liu Q, Yang J, Wang B, Liu W, Hua Z, Jiang H. Influence of salinity on the diversity and composition of carbohydrate metabolism, nitrogen and sulfur cycling genes in lake surface sediments. Front Microbiol 2022; 13:1019010. [PMID: 36519167 PMCID: PMC9742235 DOI: 10.3389/fmicb.2022.1019010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/08/2022] [Indexed: 08/23/2023] Open
Abstract
Exploring functional gene composition is essential for understanding the biogeochemical functions of lakes. However, little is known about the diversity and composition of biogeochemical cycling genes and their influencing factors in saline lakes. In this study, metagenomic analysis was employed to characterize the diversity and composition of microbial functions predicted from genes involved in carbohydrate metabolisms, nitrogen, and sulfur cycles in 17 surface sediments of Qinghai-Tibetan lakes with salinity ranging from 0.7 to 31.5 g L-1. The results showed that relative abundances of carbohydrate-active enzyme (CAZy), nitrogen, and sulfur cycling genes were 92.7-116.5, 15.1-18.7, 50.8-63.9 per 1,000 amino acid coding reads, respectively. The Shannon diversity indices of CAZy and sulfur cycling genes decreased with increasing salinity, whereas nitrogen cycling gene diversity showed an opposite trend. Relative abundances of many CAZy (i.e., carbohydrate-binding module and carbohydrate esterase), nitrogen (i.e., anammox and organic degradation and synthesis) and sulfur (i.e., dissimilatory sulfur reduction and oxidation, link between inorganic and organic sulfur transformation, sulfur disproportionation and reduction) cycling gene categories decreased with increasing salinity, whereas some CAZy (i.e., auxiliary activity), nitrogen (i.e., denitrification) and sulfur (i.e., assimilatory sulfate reduction and sulfur oxidation) gene categories showed an increasing trend. The compositions of CAZy, nitrogen, and sulfur cycling genes in the studied lake sediments were significantly (p < 0.05) affected by environmental factors such as salinity, total organic carbon, total nitrogen, and total phosphorus, with salinity having the greatest influence. Together, our results suggest that salinity may regulate the biogeochemical functions of carbohydrate metabolisms, nitrogen, and sulfur cycles in lakes through changing the diversity and composition of microbial functional genes. This finding has great implications for understanding the impact of environmental change on microbial functions in lacustrine ecosystems.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Wen Liu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhengshuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
5
|
Yang J, Han M, Zhao Z, Han J, Zhang X, Xie Z, Jiang H. Microbial response to multiple-level addition of grass organic matter in lake sediments with different salinity. FEMS Microbiol Ecol 2022; 98:6568899. [DOI: 10.1093/femsec/fiac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Water surface expansion of saline lakes usually causes the inundation of surrounding grassland, leading to the increase of terrestrial grass organic matter (OM) input to the lakes and the decrease of lake salinity. However, the influence of terrestrial grass OM input increase and salinity decrease on organic carbon mineralization and microbial community composition remains unknown in saline lakes. Here, microbial mineralization of terrestrial grass (Achnatherum splendens) OM at different quantity levels in lake sediments with different salinity was investigated by performing microcosm experiments. The results showed that the CO2 production rates increased with the increase of grass OM supply in the studied sediments with different salinity, which may be driven by certain microbial groups (e.g., Bacteroidota, Firmicutes and Ascomycota). The increase of grass OM supply reduced the richness of prokaryotic community, which will decrease the size and complexity of the studied microbial networks, but increase the interaction between prokaryotic and fungal taxa. Taken together, our results suggest that the increase of terrestrial grass OM input caused by lake expansion would enhance the mineralization of organic carbon and affect the community composition and interactions of related microorganisms in lake sediments with different salinity.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zhuoli Zhao
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Jinbin Han
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Xiying Zhang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Zhanling Xie
- College of Ecology-Environment Engineering, Qinghai University, Xining, 810016, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
6
|
Hwang Y, Schulze-Makuch D, Arens FL, Saenz JS, Adam PS, Sager C, Bornemann TLV, Zhao W, Zhang Y, Airo A, Schloter M, Probst AJ. Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. MICROBIOME 2021; 9:234. [PMID: 34836555 PMCID: PMC8627038 DOI: 10.1186/s40168-021-01177-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The hyperarid core of the Atacama Desert is an extremely harsh environment thought to be colonized by only a few heterotrophic bacterial species. Current concepts for understanding this extreme ecosystem are mainly based on the diversity of these few species, yet a substantial area of the Atacama Desert hyperarid topsoil is covered by expansive boulder accumulations, whose underlying microbiomes have not been investigated so far. With the hypothesis that these sheltered soils harbor uniquely adapted microbiomes, we compared metagenomes and geochemistry between soils below and beside boulders across three distantly located boulder accumulations in the Atacama Desert hyperarid core. RESULTS Genome-resolved metagenomics of eleven samples revealed substantially different microbial communities in soils below and beside boulders, despite the presence of shared species. Archaea were found in significantly higher relative abundance below the boulders across all samples within distances of up to 205 km. These key taxa belong to a novel genus of ammonia-oxidizing Thaumarchaeota, Candidatus Nitrosodeserticola. We resolved eight mid-to-high quality genomes of this genus and used comparative genomics to analyze its pangenome and site-specific adaptations. Ca. Nitrosodeserticola genomes contain genes for ammonia oxidation, the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway, and acetate utilization indicating a chemolithoautotrophic and mixotrophic lifestyle. They also possess the capacity for tolerating extreme environmental conditions as highlighted by the presence of genes against oxidative stress and DNA damage. Site-specific adaptations of the genomes included the presence of additional genes for heavy metal transporters, multiple types of ATP synthases, and divergent genes for aquaporins. CONCLUSION We provide the first genomic characterization of hyperarid soil microbiomes below the boulders in the Atacama Desert, and report abundant and highly adapted Thaumarchaeaota with ammonia oxidation and carbon fixation potential. Ca. Nitrosodeserticola genomes provide the first metabolic and physiological insight into a thaumarchaeal lineage found in globally distributed terrestrial habitats characterized by various environmental stresses. We consequently expand not only the known genetic repertoire of Thaumarchaeota but also the diversity and microbiome functioning in hyperarid ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yunha Hwang
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany.
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), 14473, Potsdam, Germany.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany.
- School of the Environment, Washington State University, Pullman, WA, 99164, USA.
| | - Felix L Arens
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Johan S Saenz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, 85758, Oberschleißheim, Germany
| | - Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Christof Sager
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alessandro Airo
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, 85758, Oberschleißheim, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 , Essen, Germany.
| |
Collapse
|
7
|
Zhu D, Shen G, Wang Z, Han R, Long Q, Gao X, Xing J, Li Y, Wang R. Distinctive distributions of halophilic Archaea across hypersaline environments within the Qaidam Basin of China. Arch Microbiol 2021; 203:2029-2042. [PMID: 33554274 DOI: 10.1007/s00203-020-02181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/12/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Halophilic Archaea are widely distributed globally in hypersaline environments. However, little is known of how dominant halophilic archaeal genera are distributed across environments and how they may co-associate across ecosystems. Here, the archaeal community composition and diversity from hypersaline environments (> 300 g/L salinity; total of 33 samples) in the Qaidam Basin of China were investigated using high-throughput Illumina sequencing of 16S rRNA genes. The archaeal communities (total of 3,419 OTUs) were dominated by the class Halobacteria (31.7-99.6% relative abundances) within the phylum Euryarchaeota (90.8-99.9%). Five predominant taxa, including Halorubrum, Halobacterium, Halopenitus, Methanothrix, and Halomicrobium, were observed across most samples. However, several distinct genera were associated with individual samples and were inconsistently distributed across samples, which contrast with previous studies of hypersaline archaeal communities. Additionally, co-occurrence network analysis indicated that five network clusters were present and potentially reflective of interspecies interactions among the environments, including three clusters (clusters II, III, and IV) comprising halophilic archaeal taxa within the Halobacteriaceae and Haloferacaceae families. In addition, two other clusters (clusters I and V) were identified that comprised methanogens. Finally, salinity comprising ionic concentrations (in the order of Na+ > Ca2+ > Mg2+) and pH were most correlated with taxonomic distributions across sample sites.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Guoping Shen
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Zhibo Wang
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Rui Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Qifu Long
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Xiang Gao
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Jiangwa Xing
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Yongzhen Li
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Rong Wang
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
8
|
Yang J, Jiang H, Liu W, Huang L, Huang J, Wang B, Dong H, Chu RK, Tolic N. Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. ISME JOURNAL 2020; 14:2313-2324. [PMID: 32483305 PMCID: PMC7608266 DOI: 10.1038/s41396-020-0689-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Lakes receive large amounts of terrestrially derived dissolved organic matter (tDOM). However, little is known about how aquatic microbial communities interact with tDOM in lakes. Here, by performing microcosm experiments we investigated how microbial community responded to tDOM influx in six Tibetan lakes of different salinities (ranging from 1 to 358 g/l). In response to tDOM addition, microbial biomass increased while dissolved organic carbon (DOC) decreased. The amount of DOC decrease did not show any significant correlation with salinity. However, salinity influenced tDOM transformation, i.e., microbial communities from higher salinity lakes exhibited a stronger ability to utilize tDOM of high carbon numbers than those from lower salinity. Abundant taxa and copiotrophs were actively involved in tDOM transformation, suggesting their vital roles in lacustrine carbon cycle. Network analysis indicated that 66 operational taxonomic units (OTUs, affiliated with Alphaproteobacteria, Actinobacteria, Bacteroidia, Bacilli, Gammaproteobacteria, Halobacteria, Planctomycetacia, Rhodothermia, and Verrucomicrobiae) were associated with degradation of CHO compounds, while four bacterial OTUs (affiliated with Actinobacteria, Alphaproteobacteria, Bacteroidia and Gammaproteobacteria) were highly associated with the degradation of CHOS compounds. Network analysis further revealed that tDOM transformation may be a synergestic process, involving cooperation among multiple species. In summary, our study provides new insights into a microbial role in transforming tDOM in saline lakes and has important implications for understanding the carbon cycle in aquatic environments.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China. .,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China.
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083, Beijing, China. .,Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA.
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nikola Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
9
|
Wang R, Han R, Long Q, Gao X, Xing J, Shen G, Zhu D. Bacterial and Archaeal Communities within an Ultraoligotrophic, High-altitude Lake in the Pre-Himalayas of the Qinghai-Tibet Plateau. Indian J Microbiol 2020; 60:363-373. [PMID: 32655200 DOI: 10.1007/s12088-020-00881-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/06/2020] [Indexed: 11/25/2022] Open
Abstract
Puma Yumco Lake (PYL) is an ultraoligotrophic freshwater lake that sits an altitude of 5030 m within the Qinghai-Tibet Plateau of China. The bacterial and archaeal diversity of the lake remains poorly understood, despite their potential to inform on biogeochemical cycling and environment-microbial associations in these unique environments. Here, the bacterial and archaeal communities of PYL were investigated using high-throughput sequencing analysis of community 16S rRNA gene sequences. Further, the relationships among dominant taxa and environmental factors were comprehensively evaluated. Bacterial diversity comprised 31 phyla and 371 genera (10,645 operational taxonomic units [OTUs], Shannon index values of 5.21-6.16) and was significantly higher than that of Archaea (five phyla and 24 genera comprising 1141 OTUs and Shannon index values of 1.18-3.28). The bacterial communities were dominated by Proteobacteria (48.42-59.97% relative abundances), followed by Bacteroidetes (12.5-32.51%), Acidobacteria (2.07-11.56%), Firmicutes (0.65-6.32%), Planctomycetes (0.99-3.56%), Gemmatimonadetes (0.38-3.57%), Actinobacteria (1.67-3.52%), Verrucomicrobia (0.87-2.01%), and Chloroflexi (0.5-1.17%). In addition, archaeal communities were dominated by Thaumarchaeota (33.22-93.00%), followed by Euryarchaeota (2.89-35.47%), Woesearchaeota (0.99-31.04%), and Pacearchaeota (0.01-1.14%). The most abundant bacterial genus was Rhodoferax (5.73-26.62%) and the most abundant archaeal genus was the ammonia-oxidizing Nitrososphaera (29.18-91.46%). These results suggest that the Rhodoferax and Nitrososphaera are likely to participate in biogeochemical cycles in these environments through photoheterotrophy and nitrification, respectively. Taken together, these results provide valuable data for better understanding microbial interactions with each other and with these unique environments.
Collapse
Affiliation(s)
- Rong Wang
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016 Qinghai China
| | - Rui Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 Qinghai China
| | - Qifu Long
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016 Qinghai China
| | - Xiang Gao
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016 Qinghai China
| | - Jiangwa Xing
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016 Qinghai China
| | - Guoping Shen
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016 Qinghai China
| | - Derui Zhu
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016 Qinghai China
| |
Collapse
|
10
|
Ginawi A, Wang L, Wang H, Yu B, Yunjun Y. Effects of environmental variables on abundance of ammonia-oxidizing communities in sediments of Luotian River, China. PeerJ 2020; 8:e8256. [PMID: 31934502 PMCID: PMC6951284 DOI: 10.7717/peerj.8256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ammonia-oxidizing communities play important functional roles in the nitrification. However, environmental stresses can significantly affect this process by controlling the abundant communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities. In this study, we examined the abundance variations of ammonia-oxidizing communities using quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP) in a typical subtropical river, Luotian County, South Dabie Mountains, China. Clone libraries were conducted to evaluate the community structure and abundance of AOA and AOB in sediments. Results showed that Nitrososphaera sp and Nitrosopumilus sp were the most dominant AOA. The abundance of the AOA and AOB amoA gene ranged from 5.28 × 108 gene copies (g-soil−1) to 2.23 × 108 gene copies (g-soil−1) and 5.45 × 108 gene copies (g-soil−1) to 3.30 × 107 gene copies (g-soil−1), respectively. Five environmental variables, namely, ORP, DO, NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−, Temp, and NH\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{4}^{+}$\end{document}4+ were played a major function in microbial communities of AOA and AOB in sediments. The T-RFLP profiles of AOA showed that 488 and 116 bp T-RFs were dominated. Overall, the results of this study showed that anthropogenic activities andenvironmental stress in rivers can alter the structure and function of microbes in their variable environment.
Collapse
Affiliation(s)
- Amjed Ginawi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Marine Science and Fisheries, Red Sea University, Port Sudan, Red Sea State, Sudan
| | - Lixiao Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huading Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingbing Yu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yunjun
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Alfreider A, Tartarotti B. Spatiotemporal dynamics of different CO 2 fixation strategies used by prokaryotes in a dimictic lake. Sci Rep 2019; 9:15068. [PMID: 31636358 PMCID: PMC6803681 DOI: 10.1038/s41598-019-51584-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
The Calvin-Benson-Bassham (CBB) cycle and the 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle are two inorganic carbon assimilation pathways widely used by prokaryotic autotrophs in lakes. We investigated the effect of mixing periods and stable water stratification patterns on the trajectories of both CO2 fixation strategies in a dimictic lake (Piburger See), because information on the spatiotemporal dynamics of prokaryotes using these pathways in freshwater ecosystems is far from complete. Based on a quantitative approach (droplet digital PCR) of genes coding for key enzymes in different CO2 assimilation pathways, nine depths covering the entire water column were investigated on a monthly basis for one year. Our data show that the abundance of photoautotrophs and obligate chemolithoautotrophs preferentially using form IA RubisCO was determined by seasonal variations. Highest numbers were observed in summer, while a strong decline of prokrayotes using RubisCO form IA was measured between December and May, the period where the lake was mostly covered by ice. The spatiotemporal distribution patterns of genes coding for RubisCO form IC genes, an enzyme usually used by facultative autotrophs for CO2 assimilation, were less pronounced. Bacteria harboring RubisCO form II were dominating the oxygen limited hypolimnion, while nitrifying Thaumarchaeota using the HP/HB cycle were of minor importance in the lake. Our data reveal that the seasonal heterogeneity, which is determined by the dimictic thermal regime of the lake, results in pronounced spatiotemporal changes of different CO2 assimilation pathways with depth-dependent environmental parameters as key factors for their distribution.
Collapse
Affiliation(s)
- Albin Alfreider
- Department of Ecology, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
12
|
Liu TT, Yang H. An RNA-based quantitative and compositional study of ammonium-oxidizing bacteria and archaea in Lake Taihu, a eutrophic freshwater lake. FEMS Microbiol Ecol 2019; 95:5533317. [DOI: 10.1093/femsec/fiz117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/16/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTAmmonium-oxidizing archaea (AOA) and bacteria (AOB) play crucial roles in ammonium oxidation in freshwater lake sediment. However, previous reports on the predominance of AOA and AOB in the surface sediment of Lake Taihu have been based on DNA levels, detecting the total abundance of microbiota (including inactive cells), and have resulted in numerous contradictory conclusions. Existing RNA-level studies detecting active transcription are very limited. The current study, using RNA-based real-time quantification and clone library analysis, demonstrated that the amoA gene abundance of active AOB was higher than that of active AOA, despite conflicting results at the DNA level. Further exploration revealed a significant positive correlation between the potential nitrification rate (PNR) and the abundance of AOA and AOB at the RNA level, with irregular or contradictory correlation found at the DNA level. Ultimately, using quantitative analysis of RNA levels, we show AOB to be the active dominant contributor to ammonium oxidation. Our investigations also indicated that AOB were more diverse in high-ammonium lake regions, with Nitrosomonas being the active and dominating cluster, but that AOA had an advantage in the low-ammonium lake regions.
Collapse
Affiliation(s)
- Tong-tong Liu
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Yang
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
13
|
Yang Y, Chen J, Tong T, Li B, He T, Liu Y, Xie S. Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:863-872. [PMID: 30708301 DOI: 10.1016/j.scitotenv.2019.01.307] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/29/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Lake is an important natural source of methane, a potential greenhouse gas, in the atmosphere. Aerobic methanotrophs can consume a notable proportion of the methane produced in lacustrine ecosystems. However, previous studies mainly focused on aerobic methanotrophs in deep and oligotrophic lakes, while little is known about these organisms in shallow and eutrophic lakes. Lake eutrophication leads to more abundant substrates for methanogenesis, and a subsequent higher methane flux. Therefore, the methanotrophs in eutrophic lakes might play a more important role in mediating lacustrine methane emission. In the current study, aerobic methanotrophs in the sediments of two adjacent shallow freshwater lakes at different trophic status (mesotrophic and eutrophic, respectively) were investigated. Abundant methanotrophs and active aerobic methane oxidation were observed in both lakes. While the eutrophic lake harbored a higher abundance of methanotrophs. The result of pmoA-based high-throughput sequencing suggested that methanotrophic communities in the two studied lakes were dominated by unique groups (Type Ib and Type II), dependent on lake and season. But generally, eutrophication might lead to a higher proportion of Type II methanotrophs. The abundance and uniqueness of methanotrophic community could be attributed to lake eutrophication, and were regulated by environmental variables of both sediment and overlying water. This work provides a new insight towards methanotrophs in shallow freshwater lake impacted by eutrophication.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Tao He
- South China Institute of Environmental Sciences, Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Yang J, Jiang H, Liu W, Wang B. Benthic Algal Community Structures and Their Response to Geographic Distance and Environmental Variables in the Qinghai-Tibetan Lakes With Different Salinity. Front Microbiol 2018; 9:578. [PMID: 29636745 PMCID: PMC5880929 DOI: 10.3389/fmicb.2018.00578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
15
|
Yang J, Jiang H, Wu G, Liu W, Zhang G. Distinct Factors Shape Aquatic and Sedimentary Microbial Community Structures in the Lakes of Western China. Front Microbiol 2016; 7:1782. [PMID: 27877171 PMCID: PMC5099527 DOI: 10.3389/fmicb.2016.01782] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Little is known about the relative importance of spatial and environmental factors to structuring aquatic and sedimentary microbial biogeography in lakes. Here, we investigated the microbial community composition (MCC) of the water (n = 35) and sediment (n = 35) samples from 16 lakes in western China (salinity: freshwater to salt saturation; pairwise geographical distance: 9–2027 km) using high-throughput sequencing and evaluated the relative importance of spatial and environmental factors to microbial (including total, abundant, and rare) distributions. Our results showed that spatial factors were more important than environmental factors in shaping the biogeography of aquatic and sedimentary microbial communities in the studied lakes, and spatial factors on abundant microbial community was stronger than that on the total/rare microbial communities. Moreover, sedimentary rare MCC might be more sensitive to environmental factors than its aquatic counterpart. Such different biogeography responses of total, abundant, and rare communities to environmental and spatial factors could be ascribed to different physiochemical properties between water and sediment. Collectively, this study expands our understanding of factors shaping microbial biogeography of total, abundant, and rare communities between waters and sediments of lakes.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Guojing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| |
Collapse
|
16
|
Preisner EC, Fichot EB, Norman RS. Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance. Front Microbiol 2016; 7:1632. [PMID: 27799927 PMCID: PMC5066559 DOI: 10.3389/fmicb.2016.01632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011-2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models.
Collapse
Affiliation(s)
| | | | - Robert S. Norman
- Department of Environmental Health Sciences, University of South Carolina, ColumbiaSC, USA
| |
Collapse
|
17
|
Yang Y, Zhang J, Zhao Q, Zhou Q, Li N, Wang Y, Xie S, Liu Y. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States. MICROBIAL ECOLOGY 2016; 71:257-265. [PMID: 26111964 DOI: 10.1007/s00248-015-0642-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can contribute to ammonia biotransformation in freshwater lake ecosystems. However, the factors shaping the distribution of sediment AOA and AOB in plateau freshwater lake remains unclear. The present study investigated sediment AOA and AOB communities in two freshwater lakes (hypertrophic Dianchi Lake and mesotrophic Erhai Lake) on the Yunnan Plateau (China). A remarkable difference in the abundance, diversity, and composition of sediment AOA and AOB communities was observed between Dianchi Lake and Erhai Lake. AOB usually outnumbered AOA in Dianchi Lake, but AOA showed the dominance in Erhai Lake. Organic matter (OM), total nitrogen (TN), and total phosphorus (TP) might be the key determinants of AOB abundance, while AOA abundance was likely influenced by the ration of OM to TN (C/N). AOA or AOB community structure was found to be relatively similar in the same lake. TN and TP might play important roles in shaping sediment AOA and AOB compositions in Dianchi Lake and Erhai Lake. Moreover, Nitrososphaera-like AOA were detected in Dianchi Lake. Nitrosospira- and Nitrosomonas-like AOB were dominant in Dianchi Lake and Erhai Lake, respectively. Sediment AOA and AOB communities in Dianchi Lake and Erhai Lake were generally regulated by trophic state.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jingxu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Qun Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Qiheng Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ningning Li
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Yilin Wang
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau. Sci Rep 2015; 5:18071. [PMID: 26666501 PMCID: PMC4678299 DOI: 10.1038/srep18071] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Integration of DNA derived from ancient phototrophs with their characteristic lipid biomarkers has been successfully employed to reconstruct paleoenvironmental conditions. However, it is poorly known that whether the DNA and lipids of microbial functional aerobes (such as ammonia-oxidizing archaea: AOA) can be used for reconstructing past environmental conditions. Here we identify and quantify the AOA amoA genes (encoding the alpha subunit of ammonia monooxygenases) preserved in a 5.8-m sediment core (spanning the last 18,500 years) from Qinghai Lake. Parallel analyses revealed that low amoA gene abundance corresponded to high total organic carbon (TOC) and salinity, while high amoA gene abundance corresponded to low TOC and salinity. In the Qinghai Lake region, TOC can serve as an indicator of paleo-productivity and paleo-precipitation, which is related to historic nutrient input and salinity. So our data suggest that temporal variation of AOA amoA gene abundance preserved in Qinghai Lake sediment may reflect the variations of nutrient level and salinity throughout the late Pleistocene and Holocene in the Qinghai Lake region.
Collapse
|