1
|
Valentin-Alvarado LE, Shi LD, Appler KE, Crits-Christoph A, De Anda V, Adler BA, Cui ML, Ly L, Leão P, Roberts RJ, Sachdeva R, Baker BJ, Savage DF, Banfield JF. Complete genomes of Asgard archaea reveal diverse integrated and mobile genetic elements. Genome Res 2024; 34:1595-1609. [PMID: 39406503 PMCID: PMC11529989 DOI: 10.1101/gr.279480.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 11/01/2024]
Abstract
Asgard archaea are of great interest as the progenitors of Eukaryotes, but little is known about the mobile genetic elements (MGEs) that may shape their ongoing evolution. Here, we describe MGEs that replicate in Atabeyarchaeia, a wetland Asgard archaea lineage represented by two complete genomes. We used soil depth-resolved population metagenomic data sets to track 18 MGEs for which genome structures were defined and precise chromosome integration sites could be identified for confident host linkage. Additionally, we identified a complete 20.67 kbp circular plasmid and two family-level groups of viruses linked to Atabeyarchaeia, via CRISPR spacer targeting. Closely related 40 kbp viruses possess a hypervariable genomic region encoding combinations of specific genes for small cysteine-rich proteins structurally similar to restriction-homing endonucleases. One 10.9 kbp integrative conjugative element (ICE) integrates genomically into the Atabeyarchaeum deiterrae-1 chromosome and has a 2.5 kbp circularizable element integrated within it. The 10.9 kbp ICE encodes an expressed Type IIG restriction-modification system with a sequence specificity matching an active methylation motif identified by Pacific Biosciences (PacBio) high-accuracy long-read (HiFi) metagenomic sequencing. Restriction-modification of Atabeyarchaeia differs from that of another coexisting Asgard archaea, Freyarchaeia, which has few identified MGEs but possesses diverse defense mechanisms, including DISARM and Hachiman, not found in Atabeyarchaeia. Overall, defense systems and methylation mechanisms of Asgard archaea likely modulate their interactions with MGEs, and integration/excision and copy number variation of MGEs in turn enable host genetic versatility.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Ling-Dong Shi
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Kathryn E Appler
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Alexander Crits-Christoph
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Michael L Cui
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Lynn Ly
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Pedro Leão
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | | | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA;
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3168, Australia
| |
Collapse
|
2
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
3
|
Isolation and Characterization of a Novel Lytic Halotolerant Phage from Yuncheng Saline Lake. Indian J Microbiol 2022; 62:249-256. [DOI: 10.1007/s12088-022-01005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
|
4
|
Bhattarai B, Bhattacharjee AS, Coutinho FH, Goel RK. Viruses and Their Interactions With Bacteria and Archaea of Hypersaline Great Salt Lake. Front Microbiol 2021; 12:701414. [PMID: 34650523 PMCID: PMC8506154 DOI: 10.3389/fmicb.2021.701414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023] Open
Abstract
Viruses play vital biogeochemical and ecological roles by (a) expressing auxiliary metabolic genes during infection, (b) enhancing the lateral transfer of host genes, and (c) inducing host mortality. Even in harsh and extreme environments, viruses are major players in carbon and nutrient recycling from organic matter. However, there is much that we do not yet understand about viruses and the processes mediated by them in the extreme environments such as hypersaline habitats. The Great Salt Lake (GSL) in Utah, United States is a hypersaline ecosystem where the biogeochemical role of viruses is poorly understood. This study elucidates the diversity of viruses and describes virus–host interactions in GSL sediments along a salinity gradient. The GSL sediment virosphere consisted of Haloviruses (32.07 ± 19.33%) and members of families Siphoviridae (39.12 ± 19.8%), Myoviridae (13.7 ± 6.6%), and Podoviridae (5.43 ± 0.64%). Our results demonstrate that salinity alongside the concentration of organic carbon and inorganic nutrients (nitrogen and phosphorus) governs the viral, bacteria, and archaeal diversity in this habitat. Computational host predictions for the GSL viruses revealed a wide host range with a dominance of viruses that infect Proteobacteria, Actinobacteria, and Firmicutes. Identification of auxiliary metabolic genes for photosynthesis (psbA), carbon fixation (rbcL, cbbL), formaldehyde assimilation (SHMT), and nitric oxide reduction (NorQ) shed light on the roles played by GSL viruses in biogeochemical cycles of global relevance.
Collapse
Affiliation(s)
- Bishav Bhattarai
- Department of Civil and Environmental Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Ananda S Bhattacharjee
- Carl R. Woese Institute for Genomic Biology, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Felipe H Coutinho
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Ramesh K Goel
- Department of Civil and Environmental Engineering, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Bize A, Midoux C, Mariadassou M, Schbath S, Forterre P, Da Cunha V. Exploring short k-mer profiles in cells and mobile elements from Archaea highlights the major influence of both the ecological niche and evolutionary history. BMC Genomics 2021; 22:186. [PMID: 33726663 PMCID: PMC7962313 DOI: 10.1186/s12864-021-07471-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND K-mer-based methods have greatly advanced in recent years, largely driven by the realization of their biological significance and by the advent of next-generation sequencing. Their speed and their independence from the annotation process are major advantages. Their utility in the study of the mobilome has recently emerged and they seem a priori adapted to the patchy gene distribution and the lack of universal marker genes of viruses and plasmids. To provide a framework for the interpretation of results from k-mer based methods applied to archaea or their mobilome, we analyzed the 5-mer DNA profiles of close to 600 archaeal cells, viruses and plasmids. Archaea is one of the three domains of life. Archaea seem enriched in extremophiles and are associated with a high diversity of viral and plasmid families, many of which are specific to this domain. We explored the dataset structure by multivariate and statistical analyses, seeking to identify the underlying factors. RESULTS For cells, the 5-mer profiles were inconsistent with the phylogeny of archaea. At a finer taxonomic level, the influence of the taxonomy and the environmental constraints on 5-mer profiles was very strong. These two factors were interdependent to a significant extent, and the respective weights of their contributions varied according to the clade. A convergent adaptation was observed for the class Halobacteria, for which a strong 5-mer signature was identified. For mobile elements, coevolution with the host had a clear influence on their 5-mer profile. This enabled us to identify one previously known and one new case of recent host transfer based on the atypical composition of the mobile elements involved. Beyond the effect of coevolution, extrachromosomal elements strikingly retain the specific imprint of their own viral or plasmid taxonomic family in their 5-mer profile. CONCLUSION This specific imprint confirms that the evolution of extrachromosomal elements is driven by multiple parameters and is not restricted to host adaptation. In addition, we detected only recent host transfer events, suggesting the fast evolution of short k-mer profiles. This calls for caution when using k-mers for host prediction, metagenomic binning or phylogenetic reconstruction.
Collapse
Affiliation(s)
- Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, F-92761, Antony, France.
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, PROSE, F-92761, Antony, France.,Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Mahendra Mariadassou
- Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Sophie Schbath
- Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Patrick Forterre
- Institut Pasteur, Unité de Virologie des Archées, Département de Microbiologie, 25 Rue du Docteur Roux, 75015, Paris, France. .,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
The Novel Halovirus Hardycor1, and the Presence of Active (Induced) Proviruses in Four Haloarchaea. Genes (Basel) 2021; 12:genes12020149. [PMID: 33498646 PMCID: PMC7911831 DOI: 10.3390/genes12020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
The virus Hardycor1 was isolated in 1998 and infects the haloarchaeon Halorubrum coriense. DNA from a frozen stock (HC1) was sequenced and the viral genome found to be 45,142 bp of dsDNA, probably having redundant, circularly permuted termini. The genome showed little similarity (BLASTn) to known viruses. Only twenty-two of the 53 (41%) predicted proteins were significantly similar to sequences in the NCBI nr protein database (E-value ≤ 10-15). Six caudovirus-like proteins were encoded, including large subunit terminase (TerL), major capsid protein (Mcp) and tape measure protein (Tmp). Hardycor1 was predicted to be a siphovirus (VIRFAM). No close relationship to other viruses was found using phylogenetic tree reconstructions based on TerL and Mcp. Unexpectedly, the sequenced virus stock HC1 also revealed two induced proviruses of the host: a siphovirus (Humcor1) and a pleolipovirus (Humcor2). A re-examination of other similarly sequenced, archival virus stocks revealed induced proviruses of Haloferax volcanii, Haloferax gibbonsii and Haloarcula hispanica, three of which were pleolipoviruses. One provirus (Halfvol2) of Hfx. volcanii showed little similarity (BLASTn) to known viruses and probably represents a novel virus group. The attP sequences of many pleolipoproviruses were found to be embedded in a newly detected coding sequence, split in the provirus state, that spans between genes for integrase and a downstream CxxC-motif protein. This gene might play an important role in regulation of the temperate state.
Collapse
|
7
|
Garvey M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics (Basel) 2020; 9:antibiotics9070414. [PMID: 32708627 PMCID: PMC7400126 DOI: 10.3390/antibiotics9070414] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the “One Health” approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Sligo Institute of Technology, Sligo, Ireland
| |
Collapse
|
8
|
Comparative Genomics of Two New HF1-like Haloviruses. Genes (Basel) 2020; 11:genes11040405. [PMID: 32276506 PMCID: PMC7230728 DOI: 10.3390/genes11040405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Few genomes of the HF1-group of viruses are currently available, and further examples would enhance the understanding of their evolution, improve their gene annotation, and assist in understanding gene function and regulation. Two novel HF1-group haloviruses, Serpecor1 and Hardycor2, were recovered from widely separated hypersaline lakes in Australia. Both are myoviruses with linear dsDNA genomes and infect the haloarchaeon Halorubrum coriense. Both genomes possess long, terminal direct repeat (TDR) sequences (320 bp for Serpecor1 and 306 bp for Hardycor2). The Serpecor1 genome is 74,196 bp in length, 57.0% G+C, and has 126 annotated coding sequences (CDS). Hardycor2 has a genome of 77,342 bp, 55.6% G+C, and 125 annotated CDS. They show high nucleotide sequence similarity to each other (78%) and with HF1 (>75%), and carry similar intergenic repeat (IR) sequences to those originally described in HF1 and HF2. Hardycor2 carries a DNA methyltransferase gene in the same genomic neighborhood as the methyltransferase genes of HF1, HF2 and HRTV-5, but is in the opposite orientation, and the inferred proteins are only distantly related. Comparative genomics allowed us to identify the candidate genes mediating cell attachment. The genomes of Serpecor1 and Hardycor2 encode numerous small proteins carrying one or more CxxC motifs, a signature feature of zinc-finger domain proteins that are known to participate in diverse biomolecular interactions.
Collapse
|
9
|
Dyall-Smith M, Palm P, Wanner G, Witte A, Oesterhelt D, Pfeiffer F. Halobacterium salinarum virus ChaoS9, a Novel Halovirus Related to PhiH1 and PhiCh1. Genes (Basel) 2019; 10:E194. [PMID: 30832293 PMCID: PMC6471424 DOI: 10.3390/genes10030194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022] Open
Abstract
The unexpected lysis of a large culture of Halobacterium salinarum strain S9 was found to be caused by a novel myovirus, designated ChaoS9. Virus purification from the culture lysate revealed a homogeneous population of caudovirus-like particles. The viral genome is linear, dsDNA that is partially redundant and circularly permuted, has a unit length of 55,145 nt, a G + C% of 65.3, and has 85 predicted coding sequences (CDS) and one tRNA (Arg) gene. The left arm of the genome (0⁻28 kbp) encodes proteins similar in sequence to those from known caudoviruses and was most similar to myohaloviruses phiCh1 (host: Natrialbamagadii) and phiH1 (host: Hbt. salinarum). It carries a tail-fiber gene module similar to the invertible modules present in phiH1 and phiCh1. However, while the tail genes of ChaoS9 were similar to those of phiCh1 and phiH1, the Mcp of ChaoS9 was most similar (36% aa identity) to that of Haloarcula hispanica tailed virus 1 (HHTV-1). Provirus elements related to ChaoS9 showed most similarity to tail/assembly proteins but varied in their similarity with head/assembly proteins. The right arm (29⁻55 kbp) of ChaoS9 encoded proteins involved in DNA replication (ParA, RepH, and Orc1) but the other proteins showed little similarity to those from phiH1, phiCh1, or provirus elements, and most of them could not be assigned a function. ChaoS9 is probably best classified within the genus Myohalovirus, as it shares many characteristics with phiH1 (and phiCh1), including many similar proteins. However, the head/assembly gene region appears to have undergone a recombination event, and the inferred proteins are different to those of phiH1 and phiCh1, including the major capsid protein. This makes the taxonomic classification of ChaoS9 more ambiguous. We also report a revised genome sequence and annotation of Natrialba virus phiCh1.
Collapse
Affiliation(s)
- Mike Dyall-Smith
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter Palm
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Gerhard Wanner
- AG Ultrastrukturforschung, Biozentrum der LMU, Großhadernerstrasse 2-4, 82152 Martinsried, Germany.
| | - Angela Witte
- Department of Microbiology, Immunobiology and Genetics, MFPL Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Dieter Oesterhelt
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
10
|
Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 2017; 244:181-193. [PMID: 29175107 DOI: 10.1016/j.virusres.2017.11.025] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022]
Abstract
Viruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among viruses of bacteria or eukaryotes. The uniqueness of the virion morphologies is matched by the distinctiveness of the genomes of these viruses, with ∼75% of genes encoding unique proteins, refractory to functional annotation based on sequence analyses. In this review, we summarize the state-of-the-art knowledge on various aspects of archaeal virus genomics. First, we outline how structural and functional genomics efforts provided valuable insights into the functions of viral proteins and revealed intricate details of the archaeal virus-host interactions. We then highlight recent metagenomics studies, which provided a glimpse at the diversity of uncultivated viruses associated with the ubiquitous archaea in the oceans, including Thaumarchaeota, Marine Group II Euryarchaeota, and others. These findings, combined with the recent discovery that archaeal viruses mediate a rapid turnover of thaumarchaea in the deep sea ecosystems, illuminate the prominent role of these viruses in the biosphere. Finally, we discuss the origins and evolution of archaeal viruses and emphasize the evolutionary relationships between viruses and non-viral mobile genetic elements. Further exploration of the archaeal virus diversity as well as functional studies on diverse virus-host systems are bound to uncover novel, unexpected facets of the archaeal virome.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France.
| | | | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - David Prangishvili
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| |
Collapse
|
11
|
Adriaenssens EM, van Zyl LJ, Cowan DA, Trindade MI. Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses. Viruses 2016; 8:v8010014. [PMID: 26761024 PMCID: PMC4728574 DOI: 10.3390/v8010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022] Open
Abstract
Viral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. Read and contig annotations through online pipelines showed that the salt pans harbored largely unknown viral communities. Through network analysis, we were able to assign a large portion of the unknown reads to a diverse group of ssDNA viruses. Contigs belonging to the subfamily Gokushovirinae were common in both environmental datasets. Analysis of haloarchaeal virus contigs revealed the presence of three contigs distantly related with His1, indicating a possible new lineage of salterproviruses in the Hosabes playa. Based on viral richness and read mapping analyses, the salt pan metaviromes were novel and most closely related to each other while showing a low degree of overlap with other environmental viromes.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Marla I Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| |
Collapse
|
12
|
Tschitschko B, Williams TJ, Allen MA, Páez-Espino D, Kyrpides N, Zhong L, Raftery MJ, Cavicchioli R. Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME JOURNAL 2015; 9:2094-107. [PMID: 26125682 DOI: 10.1038/ismej.2015.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/15/2015] [Accepted: 05/19/2015] [Indexed: 01/21/2023]
Abstract
Despite knowledge that viruses are abundant in natural ecosystems, there is limited understanding of which viruses infect which hosts, and how both hosts and viruses respond to those interactions-interactions that ultimately shape community structure and dynamics. In Deep Lake, Antarctica, intergenera gene exchange occurs rampantly within the low complexity, haloarchaea-dominated community, strongly balanced by distinctions in niche adaptation which maintain sympatric speciation. By performing metaproteomics for the first time on haloarchaea, genomic variation of S-layer, archaella and other cell surface proteins was linked to mechanisms of infection evasion. CRISPR defense systems were found to be active, with haloarchaea responding to at least eight distinct types of viruses, including those infecting between genera. The role of BREX systems in defending against viruses was also examined. Although evasion and defense were evident, both hosts and viruses also may benefit from viruses carrying and expressing host genes, thereby potentially enhancing genetic variation and phenotypic differences within populations. The data point to a complex inter-play leading to a dynamic optimization of host-virus interactions. This comprehensive overview was achieved only through the integration of results from metaproteomics, genomics and metagenomics.
Collapse
Affiliation(s)
- Bernhard Tschitschko
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Papke RT. Preface to the proceedings of Halophiles 2013. Front Microbiol 2015; 6:341. [PMID: 25954264 PMCID: PMC4406061 DOI: 10.3389/fmicb.2015.00341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
14
|
Archaeal viruses multiply: temporal screening in a solar saltern. Viruses 2015; 7:1902-26. [PMID: 25866903 PMCID: PMC4411682 DOI: 10.3390/v7041902] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 11/16/2022] Open
Abstract
Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.
Collapse
|
15
|
Luk AWS, Williams TJ, Erdmann S, Papke RT, Cavicchioli R. Viruses of haloarchaea. Life (Basel) 2014; 4:681-715. [PMID: 25402735 PMCID: PMC4284463 DOI: 10.3390/life4040681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022] Open
Abstract
In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.
Collapse
Affiliation(s)
- Alison W S Luk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
16
|
Makarova KS, Wolf YI, Forterre P, Prangishvili D, Krupovic M, Koonin EV. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles 2014; 18:877-93. [PMID: 25113822 PMCID: PMC4158269 DOI: 10.1007/s00792-014-0672-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/06/2014] [Indexed: 01/29/2023]
Abstract
Microbial genomes encompass a sizable fraction of poorly characterized, narrowly spread fast-evolving genes. Using sensitive methods for sequences comparison and protein structure prediction, we performed a detailed comparative analysis of clusters of such genes, which we denote "dark matter islands", in archaeal genomes. The dark matter islands comprise up to 20% of archaeal genomes and show remarkable heterogeneity and diversity. Nevertheless, three classes of entities are common in these genomic loci: (a) integrated viral genomes and other mobile elements; (b) defense systems, and (c) secretory and other membrane-associated systems. The dark matter islands in the genome of thermophiles and mesophiles show similar general trends of gene content, but thermophiles are substantially enriched in predicted membrane proteins whereas mesophiles have a greater proportion of recognizable mobile elements. Based on this analysis, we predict the existence of several novel groups of viruses and mobile elements, previously unnoticed variants of CRISPR-Cas immune systems, and new secretory systems that might be involved in stress response, intermicrobial conflicts and biogenesis of novel, uncharacterized membrane structures.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | | | | | | | | | | |
Collapse
|