1
|
Chen T, Wang S, Jiang X, Huang Y, Mo M, Yu Z. New Species of Didymellaceae within Aquatic Plants from Southwestern China. J Fungi (Basel) 2023; 9:761. [PMID: 37504749 PMCID: PMC10381294 DOI: 10.3390/jof9070761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Members of Didymellaceae have a wide geographical distribution throughout different ecosystems, and most species are associated with fruit, leaf, stem and root diseases of land plants. However, species that occur in aquatic plants are not clearly known. During a survey of the diversity of endophytes in aquatic plants in Yunnan, Sichuan, and Guizhou provinces, we obtained 51 isolates belonging to Didymellaceae based on internal transcribed spacer region (ITS) sequences. Further, the phylogenetic positions of these isolates were determined by combined sequences composed of ITS, partial large subunit nrRNA gene (28S nrDNA; LSU), RNA polymerase II second largest subunit (rpb2) and partial beta-tubulin gene (tub2). Combining morphological characteristics and multi-locus phylogenetic analyses, two new varieties belong to Boeremia and 12 new species distributed into seven genera were recognized from 51 isolates, i.e., Cumuliphoma, Didymella, Dimorphoma, Ectophoma, Leptosphaerulina, Remotididymella, and Stagonosporopsis. Among these species, only one species of Stagonosporopsis and two species of Leptosphaerulina show teleomorphic stages on OA, but have no anamorphic state. Each new species is described in detail, and the differences between new species and their phylogenetically related species are discussed here. The high frequency of new species indicates that aquatic plants may be a special ecological niche which highly promotes species differentiation. At the same time, the frequent occurrence of new species may indicate the need for extensive investigation of fungal resources in those aquatic environments where fungal diversity may be underestimated.
Collapse
Affiliation(s)
- Tong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Siyuan Wang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinwei Jiang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ying Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Minghe Mo
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| |
Collapse
|
2
|
Marzougui Z, Le Hegarat L, Hogeveen K, Huet S, Kharrat R, Marrouchi R, Fessard V. An Evaluation of the Cytotoxic and Genotoxic Effects of the Marine Toxin C17-SAMT in Human TK6 and HepaRG Cell Lines. Int J Mol Sci 2023; 24:ijms24097805. [PMID: 37175512 PMCID: PMC10177896 DOI: 10.3390/ijms24097805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This study investigates the genotoxicity and cytotoxicity of C17-sphinganine analog mycotoxin (C17-SAMT) using in vitro assays. C17-SAMT was previously identified as the cause of unusual toxicity in cultured mussels from the Bizerte Lagoon in northern Tunisia. While a previous in vivo genotoxicity study was inconclusive, in vitro results demonstrated that C17-SAMT induced an increase in micronucleus formation in human lymphoblastoid TK6 cells at concentrations of 0.87 µM and 1.74 µM. In addition, multiparametric cytotoxicity assays were performed in the human hepatoma HepaRG cell line, which showed that C17-SAMT induced mitochondrial dysfunction, decreased cellular ATP levels, and altered the expression of various proteins, including superoxide dismutase SOD2, heme oxygenase HO-1, and NF-κB. These results suggest that C17-SAMT is mutagenic in vitro and can induce mitochondrial dysfunction in HepaRG cells. However, the exact mode of action of this toxin requires further investigation. Overall, this study highlights the potential toxicity of C17-SAMT and the need for further research to better understand its effects.
Collapse
Affiliation(s)
- Zeineb Marzougui
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, B.P. 74, Tunis-Belvédère 1002, Tunisia
- Institut National Agronomique de Tunisie, Université de Carthage, Tunis 1082, Tunisia
| | - Ludovic Le Hegarat
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Riadh Kharrat
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, B.P. 74, Tunis-Belvédère 1002, Tunisia
| | - Riadh Marrouchi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, B.P. 74, Tunis-Belvédère 1002, Tunisia
| | - Valérie Fessard
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
3
|
Cheng K, Tong M, Cai Z, Jong MC, Zhou J, Xiao B. Prokaryotic and eukaryotic microbial communities associated with coral species have high host specificity in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161185. [PMID: 36581277 DOI: 10.1016/j.scitotenv.2022.161185] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Reef-building corals are well known for their obligate association with Symbiodiniaceae, and an array of other microbes, including bacteria, fungi, and symbiotic algae (i.e., total microbiome), which together form the coral holobiont. The total microbiome plays an intricate part in maintaining the homeostasis of the coral holobiont and is closely associated with host health. However, the composition of the coral associated microbiome and interaction between its different members remains elusive because few analyses have bridged taxonomically disparate groups. This research gaps have prevented a holistic understanding of the total microbiome. Thus, to simultaneously characterize the bacterial, fungal and symbiotic algal communities associated with different coral species, and explore the relationship between these symbionts and coral health, healthy and bleached tissues from four coral species, Acropora muricata, Galaxea fascicularis, Platygyra daedalea, and Pavona explanulata, were collected from the Xisha Islands of the South China Sea. Using high throughput sequencing, a high degree of host-specificity was observed among bacterial, fungal, and algal groups across coral species. There were no obvious changes in the microbial community structure of apparently healthy and bleached corals, but host bleaching allowed colonization of the holobionts by diverse opportunistic microbes, resulting in a significant elevation in the α-diversity of microbial communities. In addition, co-occurrence analysis of the coral microbiota also identified more complex microbial interactions in bleached corals than in healthy ones. In summary, this study characterized the structure of coral-associated microbiomes across four coral species, and systematically studied microbiome differences between healthy and bleached corals. The findings improve our understanding of the heterogeneity of symbiotic microorganisms and the impact of coral's physiological status on its associated microbial communities composition.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mui Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
4
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
5
|
Yang AL, Chen L, Cheng L, Li JP, Zeng ZY, Zhang HB. Two Novel Species of Mesophoma gen. nov. from China. Curr Microbiol 2023; 80:129. [PMID: 36884095 DOI: 10.1007/s00284-023-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
During an investigation of the fungal pathogens associated with the invasive weed Ageratina adenophora from China, some interesting isolates were obtained from healthy leaf, leaf spot, and roots of this weed. Among them, a novel genus Mesophoma, containing two novel species M. speciosa and M. ageratinae, was found. Phylogenetic analysis of the combined, the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (rpb2), and the partial β-tubulin (tub2) sequences, showed that M. speciosa and M. ageratinae formed a distinct clade far from all genera previously described in the family Didymellaceae. Combined distinctive morphological characters, including smaller and aseptate conidia when comparing with nearby genera Stagonosporopsis, Boeremia, and Heterphoma, allowed us to describe them as novel species belonging to a novel genus Mesophoma. The full descriptions, illustrations, and a phylogenetic tree showing the position of both M. speciosa and M. ageratinae are provided in this paper. Moreover, the potential for two strains belonging to these two species to be developed into a biocontrol for the spread of the invasive weed Ag. adenophora is also discussed.
Collapse
Affiliation(s)
- Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Lu Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Jin-Peng Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Zhao-Ying Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China. .,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.
| |
Collapse
|
6
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
7
|
Navvabi A, Homaei A, Pletschke BI, Navvabi N, Kim SK. Marine Cellulases and their Biotechnological Significance from Industrial Perspectives. Curr Pharm Des 2022; 28:3325-3336. [PMID: 35388747 DOI: 10.2174/1381612828666220406125132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 01/28/2023]
Abstract
Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via β-1,4-glycosidic bonds, which are broken down by cellulase. A great deal of biodiversity resides in the ocean, and marine systems produce a wide range of distinct, new bioactive compounds that remain available but dormant for many years. The marine environment is filled with biomass from known and unknown vertebrates and invertebrate microorganisms, with much potential for use in medicine and biotechnology. Hence, complex polysaccharides derived from marine sources are a rich resource of microorganisms equipped with enzymes for polysaccharides degradation. Marine cellulases' extracts from the isolates are tested for their functional role in degrading seaweed and modifying wastes to low molecular fragments. They purify and renew environments by eliminating possible feedstocks of pollution. This review aims to examine the various types of marine cellulase producers and assess the ability of these microorganisms to produce these enzymes and their subsequent biotechnological applications.
Collapse
Affiliation(s)
- Azita Navvabi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Brett I Pletschke
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Nazila Navvabi
- Department of Tumor Biology and Immunotherapy, Molecular Biology of Cancer, Institute of Experimental Medicine, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul 426-791, Republic of Korea
| |
Collapse
|
8
|
Holt CC, Boscaro V, Van Steenkiste NWL, Herranz M, Mathur V, Irwin NAT, Buckholtz G, Leander BS, Keeling PJ. Microscopic marine invertebrates are reservoirs for cryptic and diverse protists and fungi. MICROBIOME 2022; 10:161. [PMID: 36180959 PMCID: PMC9523941 DOI: 10.1186/s40168-022-01363-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microbial symbioses in marine invertebrates are commonplace. However, characterizations of invertebrate microbiomes are vastly outnumbered by those of vertebrates. Protists and fungi run the gamut of symbiosis, yet eukaryotic microbiome sequencing is rarely undertaken, with much of the focus on bacteria. To explore the importance of microscopic marine invertebrates as potential symbiont reservoirs, we used a phylogenetic-focused approach to analyze the host-associated eukaryotic microbiomes of 220 animal specimens spanning nine different animal phyla. RESULTS Our data expanded the traditional host range of several microbial taxa and identified numerous undescribed lineages. A lack of comparable reference sequences resulted in several cryptic clades within the Apicomplexa and Ciliophora and emphasized the potential for microbial invertebrates to harbor novel protistan and fungal diversity. CONCLUSIONS Microscopic marine invertebrates, spanning a wide range of animal phyla, host various protist and fungal sequences and may therefore serve as a useful resource in the detection and characterization of undescribed symbioses. Video Abstract.
Collapse
Affiliation(s)
- Corey C Holt
- Department of Botany, University of British Columbia, Vancouver, Canada.
- Hakai Institute, Heriot Bay, Canada.
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
| | - Niels W L Van Steenkiste
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Maria Herranz
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Gracy Buckholtz
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Brian S Leander
- Department of Botany, University of British Columbia, Vancouver, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
9
|
Velez P, Walker AK, González MC, Subash S. Narayanan S, Nakagiri A. In depth review of the ecology of arenicolous marine fungi. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Production, Bioprocessing and Anti-Proliferative Activity of Camptothecin from Penicillium chrysogenum, "An Endozoic of Marine Sponge, Cliona sp.", as a Metabolically Stable Camptothecin Producing Isolate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093033. [PMID: 35566384 PMCID: PMC9104752 DOI: 10.3390/molecules27093033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
Exploring the metabolic potency of fungi as camptothecin producers raises the hope of their usage as an industrial source of camptothecin, due to their short-life span and the feasibility of metabolic engineering. However, the tiny yield and loss of camptothecin productivity of fungi during storage and sub-culturing are challenges that counteract this approach. Marine fungi could be a novel source for camptothecin production, with higher yield and reliable metabolic sustainability. The marine fungal isolate Penicillium chrysogenum EFBL # OL597937.1 derived from the sponge "Cliona sp." has been morphologically identified and molecularly confirmed, based on the Internal Transcribed Spacer sequence, exhibiting the highest yield of camptothecin (110 μg/L). The molecular structure and chemical identity of P. chrysogenum derived camptothecin has been resolved by HPLC, FTIR and LC-MS/MS analyses, giving the same spectroscopic profiles and mass fragmentation patterns as authentic camptothecin. The extracted camptothecin displayed a strong anti-proliferative activity towards HEP-2 and HCT-116 (IC50 values 0.33-0.35 µM). The yield of camptothecin was maximized by nutritional optimization of P. chrysogenum with a Plackett-Burman design, and the productivity of camptothecin increased by 1.8 fold (200 µg/L), compared to control fungal cultures. Upon storage at 4 °C as slope culture for 8 months, the productivity of camptothecin for P. chrysogenum was reduced by 40% compared to the initial culture. Visual fading of the mycelial pigmentation of P. chrysogenum was observed during fungal storage, matched with loss of camptothecin productivity. Methylene chloride extracts of Cliona sp. had the potency to completely restore the camptothecin productivity of P. chrysogenum, ensuring the partial dependence of the expression of the camptothecin biosynthetic machinery of P. chrysogenum on the chemical signals derived from the sponge, or the associated microbial flora. This is the first report describing the feasibility of P. chrysogenum, endozoic of Cliona sp., for camptothecin production, along with reliable metabolic biosynthetic stability, which could be a new platform for scaling-up camptothecin production.
Collapse
|
11
|
Noorjahan A, Mahesh S, Aiyamperumal B, Anantharaman P. Exploring Marine Fungal Diversity and Their Applications in Agriculture. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Kopytina NI, Bocharova EA. Fouling communities of microscopic fungi on various substrates of the Black Sea. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.
Collapse
|
13
|
Kopytina NI, Bocharova EA. Fouling communities of microscopic fungi on various substrates of the Black Sea. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.
Collapse
|
14
|
Ben-Dor Cohen E, Ilan M, Yarden O. The Culturable Mycobiome of Mesophotic Agelas oroides: Constituents and Changes Following Sponge Transplantation to Shallow Water. J Fungi (Basel) 2021; 7:jof7070567. [PMID: 34356947 PMCID: PMC8307482 DOI: 10.3390/jof7070567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Marine sponges harbor a diverse array of microorganisms and the composition of the microbial community has been suggested to be linked to holo-biont health. Most of the attention concerning sponge mycobiomes has been given to sponges present in shallow depths. Here, we describe the presence of 146 culturable mycobiome taxa isolated from mesophotic niche (100 m depth)-inhabiting samples of Agelas oroides, in the Mediterranean Sea. We identify some potential in vitro interactions between several A. oroides-associated fungi and show that sponge meso-hyl extract, but not its predominantly collagen-rich part, is sufficient to support hyphal growth. We demonstrate that changes in the diversity of culturable mycobiome constituents occur following sponge transplantation from its original mesophotic habitat to shallow (10 m) waters, where historically (60 years ago) this species was found. We conclude that among the 30 fungal genera identified as associated with A. oroides, Aspergillus, Penicillium and Trichoderma constitute the core mycobiome of A. oroides, and that they persist even when the sponge is transplanted to a suboptimal environment, indicative of the presence of constant, as well as dynamic, components of the sponge mycobiome. Other genera seemed more depth-related and appeared or disappeared upon host's transfer from 100 to 10 m.
Collapse
Affiliation(s)
- Eyal Ben-Dor Cohen
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.B.-D.C.); (M.I.)
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Micha Ilan
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.B.-D.C.); (M.I.)
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence:
| |
Collapse
|
15
|
Martins T, Schinke C, Queiroz SCN, de C Braga PA, Silva FSP, Melo IS, Reyes FGR. Role of bioactive metabolites from Acremonium camptosporum associated with the marine sponge Aplysina fulva. CHEMOSPHERE 2021; 274:129753. [PMID: 33540315 DOI: 10.1016/j.chemosphere.2021.129753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Acremonium camptosporum, a fungus associated with the marine sponge Aplysina fulva, was collected from the isolated mid-Atlantic Saint Peter and Saint Paul Archipelago, Brazil, and was found to produce secondary metabolites that displayed antibacterial activities. Mass spectra data obtained by UPLC-ESI-MS/MS analyses of these extracts were compared to several databases and revealed the presence of several different cytotoxic acremonidins and acremoxanthones. The close association between the sponge and the fungi with its compounds could be of strategic importance in defending both from the high predation pressure and spatial competition in the warm-water scarps of the islands.
Collapse
Affiliation(s)
- Thamires Martins
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Claudia Schinke
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Sonia C N Queiroz
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, SP, 13820-000, Brazil.
| | - Patrícia A de C Braga
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Fábio S P Silva
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, SP, 13820-000, Brazil.
| | - Itamar S Melo
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, SP, 13820-000, Brazil.
| | - Felix G R Reyes
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
16
|
Abstract
Seagrasses are marine flowering plants that provide critical ecosystem services in coastal environments worldwide. Marine fungi are often overlooked in microbiome and seagrass studies, despite terrestrial fungi having critical functional roles as decomposers, pathogens, or endophytes in global ecosystems. Here, we characterize the distribution of fungi associated with the seagrass Zostera marina, using leaves, roots, and rhizosphere sediment from 16 locations across its full biogeographic range. Using high-throughput sequencing of the ribosomal internal transcribed spacer (ITS) region and 18S rRNA gene, we first measured fungal community composition and diversity. We then tested hypotheses of neutral community assembly theory and the degree to which deviations suggested that amplicon sequence variants (ASVs) were plant selected or dispersal limited. Finally, we identified a core mycobiome and investigated the global distribution of differentially abundant ASVs. We found that the fungal community is significantly different between sites and that the leaf mycobiome follows a weak but significant pattern of distance decay in the Pacific Ocean. Generally, there was evidence for both deterministic and stochastic factors contributing to community assembly of the mycobiome, with most taxa assembling through stochastic processes. The Z. marina core leaf and root mycobiomes were dominated by unclassified Sordariomycetes spp., unclassified Chytridiomycota lineages (including Lobulomycetaceae spp.), unclassified Capnodiales spp., and Saccharomyces sp. It is clear from the many unclassified fungal ASVs and fungal functional guilds that knowledge of marine fungi is still rudimentary. Further studies characterizing seagrass-associated fungi are needed to understand the roles of these microorganisms generally and when associated with seagrasses. IMPORTANCE Fungi have important functional roles when associated with land plants, yet very little is known about the roles of fungi associated with marine plants, like seagrasses. In this study, we report the results of a global effort to characterize the fungi associated with the seagrass Zostera marina across its full biogeographic range. Although we defined a putative global core fungal community, it is apparent from the many fungal sequences and predicted functional guilds that had no matches to existing databases that general knowledge of seagrass-associated fungi and marine fungi is lacking. This work serves as an important foundational step toward future work investigating the functional ramifications of fungi in the marine ecosystem.
Collapse
|
17
|
Baltar F, Zhao Z, Herndl GJ. Potential and expression of carbohydrate utilization by marine fungi in the global ocean. MICROBIOME 2021; 9:106. [PMID: 33975640 PMCID: PMC8114511 DOI: 10.1186/s40168-021-01063-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Most of the research on the cycling of carbon in the open-ocean has focused on heterotrophic prokaryotes and eukaryotic phytoplankton, but the role of pelagic fungi remains largely enigmatic. METHODS Here, we performed a global-ocean multi-omics analysis of all pelagic fungal carbohydrate-active enzymes (CAZymes), key enzymes in the carbon cycling. We studied the occurrence, expression, diversity, functional classification, and taxonomic affiliation of the genes encoding all pelagic fungal CAZymes from the epi- and mesopelagic realm. RESULTS Pelagic fungi are active in carbohydrate degradation as indicated by a high ratio of CAZymes transcripts per gene. Dothideomycetes in epipelagic and the Leotiomycetes in mesopelagic waters (both from the phylum Ascomycota) are the main pelagic fungi responsible for carbohydrate degradation in the ocean. The abundance, expression, and diversity of fungal CAZymes were higher in the mesopelagic than in the epipelagic waters, in contrast to the distribution pattern of prokaryotic CAZymes. CONCLUSIONS Our results reveal a widespread utilization of different types of CAZymes by pelagic fungi, uncovering an active and hitherto largely unexplored participation of fungi in the pelagic C cycling, where pelagic prokaryotes and fungi occupy different ecological niches, and fungi becoming relatively more important with depth. Video abstract.
Collapse
Affiliation(s)
- Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, AB, The Netherlands
- Vienna Metabolomics Center, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria
| |
Collapse
|
18
|
Rosado Rodríguez G, Otero Morales E. Assessment of heavy metal contamination at Tallaboa Bay (Puerto Rico) by marine sponges' bioaccumulation and fungal community composition. MARINE POLLUTION BULLETIN 2020; 161:111803. [PMID: 33128981 DOI: 10.1016/j.marpolbul.2020.111803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The water filtering capacity, and the potential to accumulate contaminants such as heavy metals, make marine sponges suitable candidates for biomonitoring of marine ecosystems. Sponges also harbor a variety of endosymbionts, including fungi, which could be affected by the accumulation of contaminants. This work examined the bioaccumulation factors of heavy metals by sponges from coastal waters from Puerto Rico. Fungal communities associated with marine sponges were assessed to determine if their composition co-varied with heavy metals in sponge tissue. All sponges in our study where found to bioaccumulate arsenic, cadmium and copper. Fungi associated with the sponges showed variations in community composition among localities and sponge species. Our results suggest that sponges, specially Tedania ignis, could be used as a complementary component for biomonitoring of arsenic, cadmium and copper; and that members of the harbored fungal communities could be negatively affected by the accumulation of heavy metals in the sponges.
Collapse
Affiliation(s)
- Gualberto Rosado Rodríguez
- Department of Marine Sciences, University of Puerto Rico, Mayagüez Campus, P.O. Box 9000, 00681 Mayagüez, Puerto Rico.
| | - Ernesto Otero Morales
- Department of Marine Sciences, University of Puerto Rico, Mayagüez Campus, P.O. Box 9000, 00681 Mayagüez, Puerto Rico.
| |
Collapse
|
19
|
Hewson I, Johnson MR, Tibbetts IR. An Unconventional Flavivirus and Other RNA Viruses in the Sea Cucumber (Holothuroidea; Echinodermata) Virome. Viruses 2020; 12:v12091057. [PMID: 32972018 PMCID: PMC7551563 DOI: 10.3390/v12091057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0151
| | | | - Ian R. Tibbetts
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| |
Collapse
|
20
|
Dennis MM, Becker AAMJ, Freeman MA. Pathology of multifocal purple spots, a nonspecific lesion morphology of Caribbean sea fans Gorgonia spp. DISEASES OF AQUATIC ORGANISMS 2020; 141:79-89. [PMID: 32940253 DOI: 10.3354/dao03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disease is contributing to the decline of coral reefs globally, but the cause and pathogenesis of most coral diseases are poorly understood. Using Gorgonia ventalina and G. flabellum as a model for coral disease diagnosis, we histologically and microbiologically examined 45 biopsies of lesions resembling Gorgonia multifocal purple spots (MFPS) with the aim of forming a comprehensive case definition based on gross and microscopic morphologic descriptions and associated etiologies. Macroscopically, all lesions were small circular areas of purple pigmentation. Gross morphologies included pigmentation only (4/45, 9%), or pigmentation with branchlet expansion and fusion (19/45, 22%), sessile masses (17/45, 38%), or hard nodules (5/45, 9%). Histological morphologic diagnoses included amoebocyte encapsulation (9/45, 20%), coenenchymal amoebocytosis (6/45, 13%), melanin (17/45, 38%), and gorgonin deposition (13/45, 29%). Sixty-four percent of instances of fungi and 86% of labyrinthulomycetes were localized to grossly normal portions of the biopsy, whereas barnacles were only within lesions, and 87% of instances of algae and 82% of cyanobacteria were within lesioned area of the biopsy. Penicillium (n = 12) was the predominant genus of fungi isolated from biopsies. Barnacles were identified as Conopea sp. using molecular techniques. The pathology and etiology underlying MFPS lesions are diverse, consistent with a highly nonspecific lesion pattern rather than a specific disease. This study demonstrates the importance of microscopic examination of tissues for accurate classification of coral diseases and lesion patterns.
Collapse
Affiliation(s)
- Michelle M Dennis
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | | | | |
Collapse
|
21
|
Lifshitz N, Hazanov L, Fine M, Yarden O. Seasonal Variations in the Culturable Mycobiome of Acropora loripes along a Depth Gradient. Microorganisms 2020; 8:E1139. [PMID: 32731457 PMCID: PMC7464153 DOI: 10.3390/microorganisms8081139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Coral associated fungi are widespread, highly diverse and are part and parcel of the coral holobiont. To study how environmental conditions prevailing near the coral-host may affect fungal diversity, the culturable (isolated on potato dextrose agar) mycobiome associated with Acropora loripes colonies was seasonally sampled along a depth gradient in the Gulf of Aqaba. Fragments were sampled from both apparently healthy coral colonies as well as those exhibiting observable lesions. Based on phylogenetic analysis of 197 fungal sequences, Ascomycota were the most prevalent (91.9%). The abundance of fungi increased with increasing water depth, where corals sampled at 25 m yielded up to 70% more fungal colony forming units (CFUs) than those isolated at 6 m. Fungal diversity at 25 m was also markedly higher, with over 2-fold more fungal families represented. Diversity was also higher in lesioned coral samples, when compared to apparently healthy colonies. In winter, concurrent with water column mixing and increased levels of available nutrients, at the shallow depths, Saccharomytacea and Sporidiobolacea were more prevalent, while in spring and fall Trichocomacea (overall, the most prevalent family isolated throughout this study) were the most abundant taxa isolated at these depths as well as at deeper sampling sites. Our results highlight the dynamic nature of the culturable coral mycobiome and its sensitivity to environmental conditions and coral health.
Collapse
Affiliation(s)
- Nofar Lifshitz
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
| | - Lena Hazanov
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Maoz Fine
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
- The Interuniversity Institute for Marine Science, P.O.B. 469, Eilat 88103, Israel; (L.H.); (M.F.)
| |
Collapse
|
22
|
Abstract
Species of Didymellaceae have a cosmopolitan distribution and are geographically widespread, occurring in diverse ecosystems. The family includes several important plant pathogenic fungi associated with fruit, leaf, stem and root diseases on a wide variety of hosts, as well as endophytic, saprobic and clinically relevant species. The Didymellaceae was recently revised based on morphological and phylogenetic analyses of ex-type strains subjected to DNA sequencing of partial gene data of the LSU, ITS, rpb2 and tub2 loci. Several poly- and paraphyletic genera, including Ascochyta, Didymella and Phoma were redefined, along with the introduction of new genera. In the present study, a global collection of 1 124 Didymellaceae strains from 92 countries, 121 plant families and 55 other substrates, including air, coral, human tissues, house dust, fungi, insects, soil, and water were examined via multi-locus phylogenetic analyses and detailed morphological comparisons, representing the broadest sampling of Didymellaceae to date. Among these, 97 isolates representing seven new genera, 40 new species and 21 new combinations were newly introduced in Didymellaceae. In addition, six epitypes and six neotypes were designated to stabilise the taxonomy and use of older names. A robust, multi-locus reference phylogenetic tree of Didymellaceae was generated. In addition, rpb2 was revealed as the most effective locus for the identification of Didymellaceae at species level, and is proposed as a secondary DNA marker for the family.
Collapse
Key Words
- Al. anatii L.W. Hou & O. Yarden
- Allophomaalba L.W. Hou, Pfenning, L. Cai & Crous
- Amphisphaeria vincetoxici De Not.
- As. koolunga (J.A. Davidson et al.) L.W. Hou, L. Cai & Crous
- Ascochyta ferulae Pat.
- Ascochyta nobilis Kabát & Bubák
- Ascochytaastragalina (Rehm ex Sacc.) L.W. Hou, L. Cai & Crous
- Ascochytapilosella L.W. Hou, L. Cai & Crous
- Calophomaparvula L.W. Hou, L. Cai & Crous
- Calophomavincetoxici (De Not.) L.W. Hou, L. Cai & Crous
- Chaetasbolisiaargentina L.W. Hou, L. Cai & Crous
- Chaetasbolisiaeupatorii (Died.) L.W. Hou, L. Cai & Crous
- Did. guttulata L.W. Hou, L. Cai & Crous
- Did. indica L.W. Hou, L. Cai & Crous
- Did. mitis L.W. Hou, L. Cai & Crous
- Did. prolaticolla L.W. Hou, L. Cai & Crous
- Did. prosopidis (Crous & A.R. Wood) L.W. Hou, L. Cai & Crous
- Did. subglobispora L.W. Hou, L. Cai & Crous
- Did. subrosea L.W. Hou, L. Cai & Crous
- Did. variabilis L.W. Hou, L. Cai & Crous
- Didymellaaloeicola L.W. Hou, L. Cai & Crous
- Didymellacombreti (Crous) L.W. Hou, L. Cai & Crous
- Dimorphoma L.W. Hou, L. Cai & Crous
- Dimorphomasaxea (Aveskamp et al.) L.W. Hou, L. Cai & Crous
- Ectodidymella L.W. Hou, L. Cai & Crous
- Ectodidymellanigrificans (P. Karst.) L.W. Hou, L. Cai & Crous
- Ectophomainsulana (Mont.) L.W. Hou, L. Cai & Crous
- Ep. dickmanii L.W. Hou & O. Yarden
- Ep. longiostiolatum L.W. Hou, L. Cai & Crous
- Ep. multiceps L.W. Hou, L. Cai & Crous
- Ep. oryzae Ito & Iwadare
- Ep. polychromum L.W. Hou, L. Cai & Crous
- Ep. purpurascens Ehrenb.
- Ep. variabile L.W. Hou, L. Cai & Crous
- Epicoccum mezzettii Goid.
- Epicoccum oryzae S. Ito & Iwadare
- Epicoccumbrahmansense L.W. Hou, L. Cai & Crous
- Epicoccumtobaicum (Szilv.) L.W. Hou, L. Cai & Crous
- Heterophoma verbasci-densiflori L.W. Hou, L. Cai & Crous
- Le. sisyrinchiicola L.W. Hou, L. Cai & Crous
- Leptosphaerulinaobtusispora L.W. Hou, L. Cai & Crous
- Lo. vitalbae (Briard & Har.) L.W. Hou, L. Cai & Crous
- Longididymella L.W. Hou, L. Cai & Crous
- Longididymellaclematidis (Woudenb. et al.) L.W. Hou, L. Cai & Crous
- Ma. terrestris L.W. Hou, L. Cai & Crous
- Macroascochyta L.W. Hou, L. Cai & Crous
- Macroascochytagrandis L.W. Hou, L. Cai & Crous
- Macroventuriaangustispora L.W. Hou, L. Cai & Crous
- Mi. taxicola L.W. Hou, L. Cai & Crous
- Mi. viridis L.W. Hou, L. Cai & Crous
- Microsphaeropsisfusca L.W. Hou, L. Cai & Crous
- Multi-locus phylogeny
- Neoa. humicola L.W. Hou, L. Cai & Crous
- Neoa. longispora L.W. Hou, L. Cai & Crous
- Neoa. mortariensis L.W. Hou, L. Cai & Crous
- Neoascochytafusiformis L.W. Hou, L. Cai & Crous
- Neodidymelliopsistiliae L.W. Hou, L. Cai & Crous
- New taxa
- No. eucalyptigena (Crous) L.W. Hou, L. Cai & Crous
- No. prosopidis (Crous & A.R. Wood) L.W. Hou, L. Cai & Crous
- Nothophoma nullicana L.W. Hou, L. Cai & Crous
- Nothophomaacaciae (Crous) L.W. Hou, L. Cai & Crous
- Nothophomainfuscata L.W. Hou, L. Cai & Crous
- Paramicrosphaeropsis L.W. Hou, L. Cai & Crous
- Paramicrosphaeropsisellipsoidea L.W. Hou, L. Cai & Crous
- Phoma
- Phoma eupatorii Died
- Phoma eupatorii Died.
- Phoma laurina Thüm., Phoma nemophilae Neerg.
- Phomatodespilosa L.W. Hou, L. Cai & Crous
- Phyllosticta acetosellae A.L. Sm. & Ramsb.
- Phyllosticta arachidis-hypogaeae V.G. Rao
- Phyllosticta insulana Mont
- Phyllosticta verbascicola Ellis & Kellerm.
- Pleosphaerulina briosiana Pollacci
- Pseudopeyronellaea L.W. Hou, L. Cai & Crous
- Pseudopeyronellaeaeucalypti (Crous & M.J. Wingf.) L.W. Hou, L. Cai & Crous
- R. humicola L.W. Hou, L. Cai & Crous
- Remotididymellabrunnea L.W. Hou, L. Cai & Crous
- Remotididymellacapsici (Bond.-Mont.) L.W. Hou, L. Cai & Crous
- Sclerotiophoma L.W. Hou, L. Cai & Crous
- Sclerotiophomaversabilis (Boerema et al.) L.W. Hou, L. Cai & Crous
- St. sambucella L.W. Hou, L. Cai & Crous
- Stagonosporopsiscucumeris L.W. Hou, L. Cai & Crous
- Stagonosporopsisnemophilae (Neerg). L.W. Hou, L. Cai & Crous
- Taxonomy
- Toruloidea tobaica Szilv
- Va. laurina (Thüm.) L.W. Hou, L. Cai & Crous
- Vacuiphomaferulae (Pat.) L.W. Hou, L. Cai & Crous
- Xenodidymellaglycyrrhizicola L.W. Hou, L. Cai & Crous
- rpb2
Collapse
Affiliation(s)
- L W Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L H Pfenning
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | - O Yarden
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.,Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.,Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.,Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - L Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Lacerda ALDF, Proietti MC, Secchi ER, Taylor JD. Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic Peninsula. Mol Ecol 2020; 29:1903-1918. [DOI: 10.1111/mec.15444] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ana L. d. F. Lacerda
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Maíra C. Proietti
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Eduardo R. Secchi
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Joe D. Taylor
- School of Science, Engineering and Environment University of Salford Manchester UK
| |
Collapse
|
24
|
Abstract
Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.
Collapse
|
25
|
Hagestad OC, Andersen JH, Altermark B, Hansen E, Rämä T. Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity. Mycology 2019; 11:230-242. [PMID: 33062384 PMCID: PMC7534220 DOI: 10.1080/21501203.2019.1708492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/01/2019] [Indexed: 11/01/2022] Open
Abstract
During a research cruise in 2016, we isolated fungi from sediments, seawater, driftwood, fruiting bodies, and macroalgae using three different media to assess species richness and potential bioactivity of cultivable marine fungi in the High Arctic region. Ten stations from the Svalbard archipelago (73-80 °N, 18-31 °E) were investigated and 33 fungal isolates were obtained. These grouped into 22 operational taxonomic units (OTUs) using nuc rDNA internal transcribed spacer regions (ITS1-5.8S-ITS2 = ITS) with acut-off set at 98% similarity. The taxonomic analysis showed that 17 OTUs belonged to Ascomycota, one to Basidiomycota, two to Mucoromycota and two were fungal-like organisms. The nuc rDNA V1-V5 regions of 18S (18S) and D1-D3 regions of 28S (28S) were sequenced from representative isolates of each OTU for comparison to GenBank sequences. Isolates of Lulworthiales and Eurotiales were the most abundant, with seven isolates each. Among the 22 OTUs, nine represent potentially undescribed species based on low similarity to GenBank sequences and 10 isolates showed inhibitory activity against Gram-positive bacteria in an agar diffusion plug assay. These results show promise for the Arctic region as asource of novel marine fungi with the ability to produce bioactive secondary metabolites with antibacterial properties.
Collapse
Affiliation(s)
- Ole Christian Hagestad
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jeanette H. Andersen
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Espen Hansen
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Teppo Rämä
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Dou X, Dong B. Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts. Mar Drugs 2019; 17:md17120670. [PMID: 31795141 PMCID: PMC6950356 DOI: 10.3390/md17120670] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.
Collapse
Affiliation(s)
- Xiaoju Dou
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa 850030, China
| | - Bo Dong
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Correspondence: ; Tel.: +86-0532-82032732
| |
Collapse
|
27
|
Paulino GVB, Félix CR, Landell MF. Diversity of filamentous fungi associated with coral and sponges in coastal reefs of northeast Brazil. J Basic Microbiol 2019; 60:103-111. [PMID: 31696957 DOI: 10.1002/jobm.201900394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 11/08/2022]
Abstract
Fungi are known to form associations with various marine organisms and substrata such as sponges and corals, both as potential symbionts or pathogens. These microorganisms occupy an ecological niche that has recently attracted great attention due to their potential in either ecological or pharmaceutical advances. However, the interaction between marine invertebrates and fungi is still poorly understood, including how they are affected by anthropogenic actions. Here, we identified 89 fungal isolates through sequencing of the ITS rDNA region obtained from the various sponge and coral species collected at two northeast Brazilian reefs. We found 43 species of fungi from 16 genera, all belonging to phylum Ascomycota. The sponges and coral shared four genera: Aspergillus, Penicillium, Trichoderma, and Cladosporium, all commonly found in terrestrial habitats and associated with marine invertebrates. We observed some unusual species in relation to the marine environment, such as Clonostachys rosea and Neopestalotiopsis clavispora, most of them related to plants, either as saprophytic or pathogenic, suggesting that these species were transported from the surrounding terrestrial environment to the reefs. In addition, some isolates represent possible undescribed species, reinforcing the importance of studying the marine environment in relation to its ecological and biotechnological importance.
Collapse
Affiliation(s)
- Gustavo V B Paulino
- Instituto de Ciências Biológicas e da Saúde - ICBS, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Ciro R Félix
- Instituto de Ciências Biológicas e da Saúde - ICBS, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Melissa F Landell
- Instituto de Ciências Biológicas e da Saúde - ICBS, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
28
|
Lee NLY, Huang D, Quek ZBR, Lee JN, Wainwright BJ. Mangrove-Associated Fungal Communities Are Differentiated by Geographic Location and Host Structure. Front Microbiol 2019; 10:2456. [PMID: 31736902 PMCID: PMC6831645 DOI: 10.3389/fmicb.2019.02456] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
Marine fungi on the whole remain understudied, especially in the highly diverse Southeast Asian region. We investigated the fungal communities associated with the mangrove tree Avicennia alba throughout Singapore and Peninsular Malaysia. At each sampling location, we examined ten individual trees, collecting leaves, fruits, pneumatophores, and an adjacent sediment sample from each plant. Amplicon sequencing of the fungal internal transcribed spacer 1 and subsequent analyses reveal significant differences in fungal communities collected from different locations and host structures. Mantel tests and multiple regression on distance matrices show a significant pattern of distance decay with samples collected close to one another having more similar fungal communities than those farther away. Submergence appears to drive part of the variation as host structures that are never submerged (leaves and fruits) have more similar fungal communities relative to those that are covered by water during high tide (pneumatophores and sediment). We suggest that fungi of terrestrial origins dominate structures that are not inundated by tidal regimes, while marine fungi dominate mangrove parts and sediments that are submerged by the incoming tide. Given the critical functions fungi play in all plants, and the important role they can have in determining the success of restoration schemes, we advocate that fungal community composition should be a key consideration in any mangrove restoration or rehabilitation project.
Collapse
Affiliation(s)
- Nicole Li Ying Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | | | - Jen Nie Lee
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Cytotoxic and Antiproliferative Effects of Preussin, a Hydroxypyrrolidine Derivative from the Marine Sponge-Associated Fungus Aspergillus candidus KUFA 0062, in a Panel of Breast Cancer Cell Lines and Using 2D and 3D Cultures. Mar Drugs 2019; 17:md17080448. [PMID: 31366127 PMCID: PMC6722565 DOI: 10.3390/md17080448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/28/2022] Open
Abstract
Preussin, a hydroxyl pyrrolidine derivative isolated from the marine sponge-associated fungus Aspergillus candidus KUFA 0062, displayed anticancer effects in some cancer cell lines, including MCF7. Preussin was investigated for its cytotoxic and antiproliferative effects in breast cancer cell lines (MCF7, SKBR3, and MDA-MB-231), representatives of major breast cancers subtypes, and in a non-tumor cell line (MCF12A). Preussin was first tested in 2D (monolayer), and then in 3D (multicellular aggregates), cultures, using a multi-endpoint approach for cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), resazurin and lactate dehydrogenase (LDH)) and proliferative (5-bromo-2'-deoxyuridine (BrdU)) assays, as well as the analysis of cell morphology by optical/electron microscopy and immunocytochemistry for caspase-3 and ki67. Preussin affected cell viability and proliferation in 2D and 3D cultures in all cell lines tested. The results in the 3D culture showed the same tendency as in the 2D culture, however, cells in the 3D culture were less responsive. The effects were observed at different concentrations of preussin, depending on the cell line and assay method. Morphological study of preussin-exposed cells revealed cell death, which was confirmed by caspase-3 immunostaining. In view of the data, we recommend a multi-endpoint approach, including histological evaluation, in future assays with the tested 3D models. Our data showed cytotoxic and antiproliferative activities of preussin in breast cancer cell lines in 2D and 3D cultures, warranting further studies for its anticancer potential.
Collapse
|
30
|
Medina D, Hughey MC, Walke JB, Becker MH, Pontarelli K, Sun S, Badgley B, Belden LK. Amphibian skin fungal communities vary across host species and do not correlate with infection by a pathogenic fungus. Environ Microbiol 2019; 21:2905-2920. [PMID: 31087743 DOI: 10.1111/1462-2920.14682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial-fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Myra C Hughey
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Vassar College, Poughkeepsie, NY, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Shan Sun
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.,College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
31
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Diversity and distribution of hidden cultivable fungi associated with marine animals of Antarctica. Fungal Biol 2019; 123:507-516. [PMID: 31196520 DOI: 10.1016/j.funbio.2019.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 12/28/2022]
Abstract
In the present study, we surveyed the distribution and diversity of fungal assemblages associated with 10 species of marine animals from Antarctica. The collections yielded 83 taxa from 27 distinct genera, which were identified using molecular biology methods. The most abundant taxa were Cladosporium sp. 1, Debaryomyces hansenii, Glaciozyma martinii, Metschnikowia australis, Pseudogymnoascus destructans, Thelebolus cf. globosus, Pseudogymnoascus pannorum, Tolypocladium tundrense, Metschnikowia australis, and different Penicillium species. The diversity, richness, and dominance of fungal assemblages ranged among the host; however, in general, the fungal community, which was composed of endemic and cold-adapted cosmopolitan taxa distributed across the different sites of Antarctic Peninsula, displayed high diversity, richness, and dominance indices. Our results contribute to knowledge about fungal diversity in the marine environment across the Antarctic Peninsula and their phylogenetic relationships with species that occur in other cold, temperate, and tropical regions of the World. Additionally, despite their extreme habitats, marine Antarctic animals shelter cryptic and complex fungal assemblages represented by endemic and cosmopolitan cold-adapted taxa, which may represent interesting models to study different symbiotic associations between fungi and their animal hosts in the extreme conditions of Antarctica.
Collapse
|
33
|
Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Ianiri G, Jones AC, Kagami M, Picard KT, Quandt CA, Raghukumar S, Riquelme M, Stajich J, Vargas-Muñiz J, Walker AK, Yarden O, Gladfelter AS. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019; 10:e01189-18. [PMID: 30837337 PMCID: PMC6401481 DOI: 10.1128/mbio.01189-18] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
Collapse
Affiliation(s)
- Anthony Amend
- Department of Botany, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Gaetan Burgaud
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - M H Gutiérrez
- Departamento de Oceanografía, Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik F Y Hom
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam C Jones
- Gordon and Betty Moore Foundation, Palo Alto, California, USA
| | - Maiko Kagami
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Kathryn T Picard
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C Alisha Quandt
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, Colorado, USA
| | | | - Mertixell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Jason Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - José Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison K Walker
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
34
|
Baron NC, Costa NTA, Mochi DA, Rigobelo EC. First report of Aspergillus sydowii and Aspergillus brasiliensis as phosphorus solubilizers in maize. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1392-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Balabanova L, Slepchenko L, Son O, Tekutyeva L. Biotechnology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Front Microbiol 2018; 9:1527. [PMID: 30050513 PMCID: PMC6052901 DOI: 10.3389/fmicb.2018.01527] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the metabolic capacity to degrade environment organic matter, much of which is the plant and algae material enriched with the cell wall carbohydrates and polyphenol complexes that frequently can be assimilated by only marine fungi. As the most renewable energy feedstock on the Earth, the plant or algae polymeric substrates induce an expression of microbial extracellular enzymes that catalyze their cleaving up to the component sugars. However, the question of what the marine fungi contributes to the plant and algae material biotransformation processes has yet to be highlighted sufficiently. In this review, we summarized the potential of marine fungi alternatively to terrestrial fungi to produce the biotechnologically valuable extracellular enzymes in response to the plant and macroalgae polymeric substrates as sources of carbon for their bioconversion used for industries and bioremediation.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Oksana Son
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Liudmila Tekutyeva
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
36
|
Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale. World J Microbiol Biotechnol 2018; 34:98. [PMID: 29922855 DOI: 10.1007/s11274-018-2482-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
A Trichoderma orientale strain LSBA1 was isolated from the Mediterranean marine sponge Cymbaxinella damicornis. The crude extract of T. orientale mycelium showed inhibitory activity against growth of Gram-positive and Gram-negative bacteria as well as clinical isolates of Candida albicans. Purification of the anti-Candida component was performed using a combination of open silica gel-60 column and reverse phase high performance liquid chromatography. The active compound called hyporientalin A has been identified as a peptaibol analogue of longibrachin-A-II using mass spectrometry. It exhibited fungicidal activity against clinical isolates of C. albicans with minimal inhibitory concentrations (MICs) ranging from 2.49 to 19.66 µM, comparable to that of the antifungal agent amphotericin B. Our data support the use of hyporientalin A as a promising new and efficient antifungal drug in the treatment of candidiasis while controlling toxicity.
Collapse
|
37
|
Bovio E, Garzoli L, Poli A, Prigione V, Firsova D, McCormack G, Varese G. The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst Evol 2018; 1:141-167. [PMID: 32490365 PMCID: PMC7259239 DOI: 10.3114/fuse.2018.01.07] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Covering 70 % of Earth, oceans are at the same time the most common and the environment least studied by microbiologists. Considering the large gaps in our knowledge on the presence of marine fungi in the oceans, the aim of this research was to isolate and identify the culturable fungal community within three species of sponges, namely Dysidea fragilis, Pachymatisma johnstonia and Sycon ciliatum, collected in the Atlantic Ocean and never studied for their associated mycobiota. Applying different isolation methods, incubation temperatures and media, and attempting to mimic the marine and sponge environments, were fundamental to increase the number of cultivable taxa. Fungi were identified using a polyphasic approach, by means of morpho-physiological, molecular and phylogenetic techniques. The sponges revealed an astonishing fungal diversity represented by 87 fungal taxa. Each sponge hosted a specific fungal community with more than half of the associated fungi being exclusive of each invertebrate. Several species isolated and identified in this work, already known in terrestrial environment, were first reported in marine ecosystems (21 species) and in association with sponges (49 species), including the two new species Thelebolus balaustiformis and Thelebolus spongiae, demonstrating that oceans are an untapped source of biodiversity.
Collapse
Affiliation(s)
- E. Bovio
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
- Marine Natural Products Team, CNRS, Institute of Chemistry (UMR 7272), University Nice Côte d’Azur, Nice, 06100, France
| | - L. Garzoli
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - A. Poli
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - V. Prigione
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - D. Firsova
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - G.P. McCormack
- Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - G.C. Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
38
|
Bonthond G, Merselis DG, Dougan KE, Graff T, Todd W, Fourqurean JW, Rodriguez-Lanetty M. Inter-domain microbial diversity within the coral holobiont Siderastrea siderea from two depth habitats. PeerJ 2018; 6:e4323. [PMID: 29441234 PMCID: PMC5808317 DOI: 10.7717/peerj.4323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Corals host diverse microbial communities that are involved in acclimatization, pathogen defense, and nutrient cycling. Surveys of coral-associated microbes have been particularly directed toward Symbiodinium and bacteria. However, a holistic understanding of the total microbiome has been hindered by a lack of analyses bridging taxonomically disparate groups. Using high-throughput amplicon sequencing, we simultaneously characterized the Symbiodinium, bacterial, and fungal communities associated with the Caribbean coral Siderastrea siderea collected from two depths (17 and 27 m) on Conch reef in the Florida Keys. S. siderea hosted an exceptionally diverse Symbiodinium community, structured differently between sampled depth habitats. While dominated at 27 m by a Symbiodinium belonging to clade C, at 17 m S. siderea primarily hosted a mixture of clade B types. Most fungal operational taxonomic units were distantly related to available reference sequences, indicating the presence of a high degree of fungal novelty within the S. siderea holobiont and a lack of knowledge on the diversity of fungi on coral reefs. Network analysis showed that co-occurrence patterns in the S. siderea holobiont were prevalent among bacteria, however, also detected between fungi and bacteria. Overall, our data show a drastic shift in the associated Symbiodinium community between depths on Conch Reef, which might indicate that alteration in this community is an important mechanism facilitating local physiological adaptation of the S. siderea holobiont. In contrast, bacterial and fungal communities were not structured differently between depth habitats.
Collapse
Affiliation(s)
- Guido Bonthond
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel G Merselis
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Katherine E Dougan
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | | | - James W Fourqurean
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | |
Collapse
|
39
|
Naim MA, Smidt H, Sipkema D. Fungi found in Mediterranean and North Sea sponges: how specific are they? PeerJ 2017; 5:e3722. [PMID: 28894639 PMCID: PMC5591636 DOI: 10.7717/peerj.3722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/31/2017] [Indexed: 01/30/2023] Open
Abstract
Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units) were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales), representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community.
Collapse
Affiliation(s)
- Mohd Azrul Naim
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.,Department of Biotechnology, International Islamic University, Jalan Istana, Malaysia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
40
|
Ainsworth TD, Fordyce AJ, Camp EF. The Other Microeukaryotes of the Coral Reef Microbiome. Trends Microbiol 2017; 25:980-991. [PMID: 28720387 DOI: 10.1016/j.tim.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022]
Abstract
In marine ecosystems microbial communities are critical to ocean function, global primary productivity, and biogeochemical cycles. Both prokaryotic and eukaryotic microbes are essential symbionts and mutualists, nonpathogenic invaders, primary pathogens, have been linked to disease emergence, and can underpin broader ecosystem changes. However, in the effort to determine coral-microbial interactions, the structure and function of the eukaryotic microbes of the microbiome have been studied less. Eukaryotic microbes are important members of the microbiome, constitute entire kingdoms of life, and make important contributions to ecosystem function. Here, we outline the roles of eukaryotic microbes in marine systems and their contribution to ecosystem change, and discuss the microeukaryotic microbiome of corals and coral reefs.
Collapse
Affiliation(s)
- T D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4810, QLD, Australia.
| | - A J Fordyce
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4810, QLD, Australia
| | - E F Camp
- Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| |
Collapse
|
41
|
Catón L, Yurkov A, Giesbers M, Dijksterhuis J, Ingham CJ. Physically Triggered Morphology Changes in a Novel Acremonium Isolate Cultivated in Precisely Engineered Microfabricated Environments. Front Microbiol 2017; 8:1269. [PMID: 28769882 PMCID: PMC5509762 DOI: 10.3389/fmicb.2017.01269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Fungi are strongly affected by their physical environment. Microfabrication offers the possibility of creating new culture environments and ecosystems with defined characteristics. Here, we report the isolation of a novel member of the fungal genus Acremonium using a microengineered cultivation chip. This isolate was unusual in that it organizes into macroscopic structures when initially cultivated within microwells with a porous aluminum oxide (PAO) base. These “templated mycelial bundles” (TMB) were formed from masses of parallel hyphae with side branching suppressed. TMB were highly hydrated, facilitating the passive movement of solutes along the bundle. By using a range of culture chips, it was deduced that the critical factors in triggering the TMB were growth in microwells from 50 to 300 μm in diameter with a PAO base. Cultivation experiments, using spores and pigments as tracking agents, indicate that bulk growth of the TMB occurs at the base. TMB morphology is highly coherent and is maintained after growing out of the microwells. TMB can explore their environment by developing unbundled lateral hyphae; TMB only followed if nutrients were available. Because of the ease of fabricating numerous microstructures, we suggest this is a productive approach for exploring morphology and growth in multicellular microorganisms and microbial communities.
Collapse
Affiliation(s)
| | - Andrey Yurkov
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweig, Germany
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University Plant SciencesWageningen, Netherlands
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Centre-KNAW Fungal Biodiversity CentreUtrecht, Netherlands
| | | |
Collapse
|
42
|
Wainwright BJ, Zahn GL, Spalding HL, Sherwood AR, Smith CM, Amend AS. Fungi associated with mesophotic macroalgae from the 'Au'au Channel, west Maui are differentiated by host and overlap terrestrial communities. PeerJ 2017; 5:e3532. [PMID: 28713652 PMCID: PMC5508810 DOI: 10.7717/peerj.3532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Mesophotic coral ecosystems are an almost entirely unexplored and undocumented environment that likely contains vast reservoirs of undescribed biodiversity. Twenty-four macroalgae samples, representing four genera, were collected from a Hawaiian mesophotic reef at water depths between 65 and 86 m in the 'Au'au Channel, Maui, Hawai'i. Algal tissues were surveyed for the presence and diversity of fungi by sequencing the ITS1 gene using Illumina technology. Fungi from these algae were then compared to previous fungal surveys conducted in Hawaiian terrestrial ecosystems. Twenty-seven percent of the OTUs present on the mesophotic coral ecosystem samples were shared between the marine and terrestrial environment. Subsequent analyses indicated that host species of algae significantly differentiate fungal community composition. This work demonstrates yet another understudied habitat with a moderate diversity of fungi that should be considered when estimating global fungal diversity.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Geoffrey L Zahn
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Heather L Spalding
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Alison R Sherwood
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Celia M Smith
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Anthony S Amend
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
43
|
Chen L, Fu C, Wang G. Microbial diversity associated with ascidians: a review of research methods and application. Symbiosis 2016. [DOI: 10.1007/s13199-016-0398-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Tisthammer KH, Cobian GM, Amend AS. Global biogeography of marine fungi is shaped by the environment. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.09.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Blackall LL, Wilson B, van Oppen MJH. Coral-the world's most diverse symbiotic ecosystem. Mol Ecol 2015; 24:5330-47. [DOI: 10.1111/mec.13400] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Linda L. Blackall
- Department of Chemistry and Biotechnology; Faculty of Science, Engineering & Technology; Swinburne University of Technology; Melbourne Vic. 3122 Australia
| | - Bryan Wilson
- Marine Microbiology Research Group; Department of Biology; University of Bergen; Thormøhlensgate 53B 5020 Bergen Norway
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science; PMB No. 3 Townsville MC Qld. 4810 Australia
- School of BioSciences; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
46
|
|
47
|
Zhao Y, Si L, Liu D, Proksch P, Zhou D, Lin W. Truncateols A–N, new isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with anti-H1N1 virus activities. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 2015; 4:176. [PMID: 25621279 PMCID: PMC4286716 DOI: 10.3389/fcimb.2014.00176] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/04/2014] [Indexed: 01/18/2023] Open
Abstract
In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.
Collapse
Affiliation(s)
- Janelle R. Thompson
- Civil and Environmental Engineering Department, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Hanny E. Rivera
- Civil and Environmental Engineering Department, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Biology, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| | - Collin J. Closek
- Department of Biology, Pennsylvania State UniversityUniversity Park, PA, USA
| | - Mónica Medina
- Department of Biology, Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
49
|
Koch L, Lodin A, Herold I, Ilan M, Carmeli S, Yarden O. Sensitivity of Neurospora crassa to a marine-derived Aspergillus tubingensis anhydride exhibiting antifungal activity that is mediated by the MAS1 protein. Mar Drugs 2014; 12:4713-31. [PMID: 25257783 PMCID: PMC4178490 DOI: 10.3390/md12094713] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 02/04/2023] Open
Abstract
The fungus Aspergillustubingensis (strain OY907) was isolated from the Mediterranean marine sponge Ircinia variabilis. Extracellular extracts produced by this strain were found to inhibit the growth of several fungi. Among the secreted extract components, a novel anhydride metabolite, tubingenoic anhydride A (1) as well as the known 2-carboxymethyl-3-hexylmaleic acid anhydride, asperic acid, and campyrone A and C were purified and their structure elucidated. Compound 1 and 2-carboxymethyl-3-hexylmaleic acid anhydride inhibited Neurospora crassa growth (MIC = 330 and 207 μM, respectively) and affected hyphal morphology. We produced a N. crassa mutant exhibiting tolerance to 1 and found that a yet-uncharacterized gene, designated mas-1, whose product is a cytosolic protein, confers sensitivity to this compound. The ∆mas-1 strain showed increased tolerance to sublethal concentrations of the chitin synthase inhibitor polyoxin D, when compared to the wild type. In addition, the expression of chitin synthase genes was highly elevated in the ∆mas-1 strain, suggesting the gene product is involved in cell wall biosynthesis and the novel anhydride interferes with its function.
Collapse
Affiliation(s)
- Liat Koch
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Anat Lodin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv 69978, Israel.
| | - Inbal Herold
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shmuel Carmeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv 69978, Israel.
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|