1
|
Chen X, Feng R, Du Q, Mauchline TH, Clark IM, Lu Y, Liu L. Identification and genomic analysis of a thermophilic bacterial strain that reduces ammonia loss from composting. Microbiol Spectr 2024; 12:e0076324. [PMID: 39162261 PMCID: PMC11448220 DOI: 10.1128/spectrum.00763-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Ammonia loss is the most severe during the high-temperature stage (>50°C) of aerobic composting. Regulating ammonia volatilization during this period via thermophilic microbes can significantly improve the nitrogen content of compost and reduce air pollution due to ammonia loss. In this study, an ammonia-assimilating bacterial strain named LL-8 was screened out as having the strongest ammonia nitrogen conversion rate (32.7%) at high temperatures (50°C); it is able to significantly reduce 42.9% ammonia volatile loss in chicken manure composting when applied at a high-temperature stage. Phylogenetic analysis revealed that LL-8 was highly similar (>98%) with Priestia aryabhattai B8W22T and identified as Priestia aryabhatta. Genomic analyses indicated that the complete genome of LL-8 comprised 5,060,316 base pairs with a GC content of 32.7% and encoded 5,346 genes. Genes, such as gudB, rocG, glnA, gltA, and gltB, that enable bacteria to assimilate ammonium nitrogen were annotated in the LL-8 genome based on the comparison to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results implied that the application of thermophilic ammonia-assimilating strain P. aryabhatta LL-8 would be a promising solution to reduce ammonia loss and mitigate air pollution of aerobic composting.IMPORTANCEAerobic composting is one of the essential ways to recycle organic waste, but its ammonia volatilization is severe and results in significant nitrogen loss, especially during the high-temperature period, which is also harmful to the environment. The application of thermophilic bacteria that can use ammonia as a nitrogen source at high temperatures is helpful to reduce the ammonia volatilization loss of composting. In this study, we screened and identified a bacteria strain called LL-8 with high temperature (50°C) resistance and strong ammonia-assimilating ability. It also revealed significant effects on decreasing ammonia volatile loss in composting. The whole-genome analysis revealed that LL-8 could utilize ammonium nitrogen by assimilation to decrease ammonia volatilization. Our work provides a theoretical basis for the application of this functional bacteria in aerobic composting to control nitrogen loss from ammonia volatilization.
Collapse
Affiliation(s)
- Xuejuan Chen
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Rong Feng
- Lijiang Culture and Tourism College, Lijiang, Yunnan, China
| | - Qianhui Du
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Tim H. Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Hertfordshire, United Kingdom
| | - Ian M. Clark
- Sustainable Soils and Crops, Rothamsted Research, Hertfordshire, United Kingdom
| | - Yingang Lu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Li Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
3
|
Matavacas J, Anand D, von Wachenfeldt C. New insights into the disulfide stress response by the Bacillus subtilis Spx system at a single-cell level. Mol Microbiol 2023. [PMID: 37330636 DOI: 10.1111/mmi.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Spx is a global transcriptional regulator that orchestrates the Bacillus subtilis response to disulfide stress. The YjbH (SpxH) protein adapts Spx for ClpXP-mediated degradation, playing a critical role in the regulation of the cellular Spx levels. Upon stress, YjbH forms aggregates by a yet unknown mechanism, resulting in increased Spx levels due to reduced proteolysis. Here, we studied how individual cells use the Spx-YjbH system to respond to disulfide stress. We show, using fluorescent reporters, a correlation between the Spx levels and the amount of YjbH, as well as a transient growth inhibition upon disulfide stress. The in vivo dynamics and inheritance of YjbH aggregates are characterized by a bipolar distribution over time and appear to be entropy-driven by nucleoid exclusion. Moreover, we reveal that the population following disulfide stress is highly heterogenous in terms of aggregate load and that the aggregate load has strong implications for cellular fitness. We propose that the observed heterogeneity could be a mechanism to ensure population survival during stress. Finally, we find that the two YjbH domains (DsbA-like domain and winged-helix domain) contribute to its aggregation function, and show that the aggregation of the DsbA-like domain is conserved among other studied orthologs, whereas important differences are observed for the winged-helix domain.
Collapse
Affiliation(s)
| | - Deepak Anand
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
4
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
5
|
Hajdusits B, Suskiewicz MJ, Hundt N, Meinhart A, Kurzbauer R, Leodolter J, Kukura P, Clausen T. McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation. eLife 2021; 10:63505. [PMID: 34328418 PMCID: PMC8370763 DOI: 10.7554/elife.63505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
In Gram-positive bacteria, the McsB protein arginine kinase is central to protein quality control, labeling aberrant molecules for degradation by the ClpCP protease. Despite its importance for stress response and pathogenicity, it is still elusive how the bacterial degradation labeling is regulated. Here, we delineate the mechanism how McsB targets aberrant proteins during stress conditions. Structural data reveal a self-compartmentalized kinase, in which the active sites are sequestered in a molecular cage. The ‘closed’ octamer interconverts with other oligomers in a phosphorylation-dependent manner and, unlike these ‘open’ forms, preferentially labels unfolded proteins. In vivo data show that heat-shock triggers accumulation of higher order oligomers, of which the octameric McsB is essential for surviving stress situations. The interconversion of open and closed oligomers represents a distinct regulatory mechanism of a degradation labeler, allowing the McsB kinase to adapt its potentially dangerous enzyme function to the needs of the bacterial cell.
Collapse
Affiliation(s)
- Bence Hajdusits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Marcin J Suskiewicz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Nikolas Hundt
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Julia Leodolter
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Thüring M, Ganapathy S, Schlüter MAC, Lechner M, Hartmann RK. 6S-2 RNA deletion in the undomesticated B. subtilis strain NCIB 3610 causes a biofilm derepression phenotype. RNA Biol 2020; 18:79-92. [PMID: 32862759 DOI: 10.1080/15476286.2020.1795408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bacterial 6S RNA regulates transcription via binding to the active site of RNA polymerase holoenzymes. 6S RNA has been identified in the majority of bacteria, in most cases encoded by a single gene. Firmicutes including Bacillus subtilis encode two 6S RNA paralogs, 6S-1 and 6S-2 RNA. Hypothesizing that the regulatory role of 6S RNAs may be particularly important under natural, constantly changing environmental conditions, we constructed 6S RNA deletion mutants of the undomesticated B. subtilis wild-type strain NCIB 3610. We observed a strong phenotype for the ∆6S-2 RNA strain that showed increased biofilm formation on solid media and the ability to form surface-attached biofilms in liquid culture. This phenotype remained undetected in derived laboratory strains (168, PY79) that are defective in biofilm formation. Quantitative RT-PCR data revealed transcriptional upregulation of biofilm marker genes such as tasA, epsA and bslA in the ∆6S-2 RNA strain, particularly during transition from exponential to stationary growth phase. Salt stress, which blocks sporulation at a very early stage, was found to override the derepressed biofilm phenotype of the ∆6S-2 RNA strain. Furthermore, the ∆6S-2 RNA strain showed retarded swarming activity and earlier spore formation. Finally, the ∆6S-1&2 RNA double deletion strain showed a prolonged lag phase of growth under oxidative, high salt and alkaline stress conditions, suggesting that the interplay of both 6S RNAs in B. subtilis optimizes and fine-tunes transcriptomic adaptations, thereby contributing to the fitness of B. subtilis under the unsteady and temporarily harsh conditions encountered in natural habitats.
Collapse
Affiliation(s)
- Marietta Thüring
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - Sweetha Ganapathy
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - M Amri C Schlüter
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology, Bioinformatics Core Facility , Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| |
Collapse
|
7
|
Santos AL, Lindner AB. Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5716409. [PMID: 28894508 PMCID: PMC5574318 DOI: 10.1155/2017/5716409] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/28/2017] [Indexed: 02/07/2023]
Abstract
Aging is characterized by the progressive decline of biochemical and physiological function in an individual. Consequently, aging is a major risk factor for diseases like cancer, obesity, and type 2 diabetes. The cellular and molecular mechanisms of aging are not well understood, nor is the relationship between aging and the onset of diseases. One of the hallmarks of aging is a decrease in cellular proteome homeostasis, allowing abnormal proteins to accumulate. This phenomenon is observed in both eukaryotes and prokaryotes, suggesting that the underlying molecular processes are evolutionarily conserved. Similar protein aggregation occurs in the pathogenesis of diseases like Alzheimer's and Parkinson's. Further, protein posttranslational modifications (PTMs), either spontaneous or physiological/pathological, are emerging as important markers of aging and aging-related diseases, though clear causality has not yet been firmly established. This review presents an overview of the interplay of PTMs in aging-associated molecular processes in eukaryotic aging models. Understanding PTM roles in aging could facilitate targeted therapies or interventions for age-related diseases. In addition, the study of PTMs in prokaryotes is highlighted, revealing the potential of simple prokaryotic models to uncover complex aging-associated molecular processes in the emerging field of microbiogerontology.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes and Sorbonne Paris Cité, Paris, France
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes and Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
9
|
Dormeyer M, Lübke AL, Müller P, Lentes S, Reuß DR, Thürmer A, Stülke J, Daniel R, Brantl S, Commichau FM. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:279-289. [PMID: 28294562 DOI: 10.1111/1758-2229.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations.
Collapse
Affiliation(s)
- Miriam Dormeyer
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Anastasia L Lübke
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Peter Müller
- Department of Genetics, Bacterial Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Sabine Lentes
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Daniel R Reuß
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Sabine Brantl
- Department of Genetics, Bacterial Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| |
Collapse
|
10
|
Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 2016; 539:48-53. [PMID: 27749819 DOI: 10.1038/nature20122] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/29/2016] [Indexed: 11/08/2022]
Abstract
Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.
Collapse
|
11
|
Grangeasse C, Stülke J, Mijakovic I. Regulatory potential of post-translational modifications in bacteria. Front Microbiol 2015; 6:500. [PMID: 26074895 PMCID: PMC4446998 DOI: 10.3389/fmicb.2015.00500] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Christophe Grangeasse
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, University of Lyon Lyon, France
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Göttingen Göttingen, Germany
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology Göteborg, Sweden
| |
Collapse
|
12
|
Stannek L, Thiele MJ, Ischebeck T, Gunka K, Hammer E, Völker U, Commichau FM. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate inBacillus subtilis. Environ Microbiol 2015; 17:3379-90. [DOI: 10.1111/1462-2920.12813] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/04/2015] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Lorena Stannek
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Martin J. Thiele
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Till Ischebeck
- Department for Plant Biochemistry; Albrecht-von-Haller-Institute for Plant Sciences; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Katrin Gunka
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Friedrich-Ludwig-Jahnstr. 15a Greifswald D-17475 Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Friedrich-Ludwig-Jahnstr. 15a Greifswald D-17475 Germany
| | - Fabian M. Commichau
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| |
Collapse
|