1
|
Kudo F, Chikuma T, Nambu M, Chisuga T, Sumimoto S, Iwasaki A, Suenaga K, Miyanaga A, Eguchi T. Unique Initiation and Termination Mechanisms Involved in the Biosynthesis of a Hybrid Polyketide-Nonribosomal Peptide Lyngbyapeptin B Produced by the Marine Cyanobacterium Moorena bouillonii. ACS Chem Biol 2023; 18:875-883. [PMID: 36921345 PMCID: PMC10127204 DOI: 10.1021/acschembio.3c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Lyngbyapeptin B is a hybrid polyketide-nonribosomal peptide isolated from particular marine cyanobacteria. In this report, we carried out genome sequence analysis of a producer cyanobacterium Moorena bouillonii to understand the biosynthetic mechanisms that generate the unique structural features of lyngbyapeptin B, including the (E)-3-methoxy-2-butenoyl starter unit and the C-terminal thiazole moiety. We identified a putative lyngbyapeptin B biosynthetic (lynB) gene cluster comprising nine open reading frames that include two polyketide synthases (PKSs: LynB1 and LynB2), four nonribosomal peptide synthetases (NRPSs: LynB3, LynB4, LynB5, and LynB6), a putative nonheme diiron oxygenase (LynB7), a type II thioesterase (LynB8), and a hypothetical protein (LynB9). In vitro enzymatic analysis of LynB2 with methyltransferase (MT) and acyl carrier protein (ACP) domains revealed that the LynB2 MT domain (LynB2-MT) catalyzes O-methylation of the acetoacetyl-LynB2 ACP domain (LynB2-ACP) to yield (E)-3-methoxy-2-butenoyl-LynB2-ACP. In addition, in vitro enzymatic analysis of LynB7 revealed that LynB7 catalyzes the oxidative decarboxylation of (4R)-2-methyl-2-thiazoline-4-carboxylic acid to yield 2-methylthiazole in the presence of Fe2+ and molecular oxygen. This result indicates that LynB7 is responsible for the last post-NRPS modification to give the C-terminal thiazole moiety in lyngbyapeptin B biosynthesis. Overall, we identified and characterized a new marine cyanobacterial hybrid PKS-NRPS biosynthetic gene cluster for lyngbyapeptin B production, revealing two unique enzymatic logics.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Takuji Chikuma
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Mizuki Nambu
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Shimpei Sumimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
2
|
Castellani LG, Luchetti A, Nilsson JF, Pérez-Giménez J, Struck B, Schlüter A, Pühler A, Niehaus K, Romero D, Pistorio M, Torres Tejerizo G. RcgA and RcgR, Two Novel Proteins Involved in the Conjugative Transfer of Rhizobial Plasmids. mBio 2022; 13:e0194922. [PMID: 36073816 PMCID: PMC9601222 DOI: 10.1128/mbio.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that are able to establish a nitrogen-fixing symbiotic interaction with leguminous plants. Rhizobia genomes usually harbor several plasmids which can be transferred to other organisms by conjugation. Two main mechanisms of the regulation of rhizobial plasmid transfer have been described: quorum sensing (QS) and the rctA/rctB system. Nevertheless, new genes and molecules that modulate conjugative transfer have recently been described, demonstrating that new actors can tightly regulate the process. In this work, by means of bioinformatics tools and molecular biology approaches, two hypothetical genes are identified as playing key roles in conjugative transfer. These genes are located between conjugative genes of plasmid pRfaLPU83a from Rhizobium favelukesii LPU83, a plasmid that shows a conjugative transfer behavior depending on the genomic background. One of the two mentioned genes, rcgA, is essential for conjugation, while the other, rcgR, acts as an inhibitor of the process. In addition to introducing this new regulatory system, we show evidence of the functions of these genes in different genomic backgrounds and confirm that homologous proteins from non-closely related organisms have the same functions. These findings set up the basis for a new regulatory circuit of the conjugative transfer of plasmids. IMPORTANCE Extrachromosomal DNA elements, such as plasmids, allow for the adaptation of bacteria to new environments by conferring new determinants. Via conjugation, plasmids can be transferred between members of the same bacterial species, different species, or even to organisms belonging to a different kingdom. Knowledge about the regulatory systems of plasmid conjugative transfer is key in understanding the dynamics of their dissemination in the environment. As the increasing availability of genomes raises the number of predicted proteins with unknown functions, deeper experimental procedures help to elucidate the roles of these determinants. In this work, two uncharacterized proteins that constitute a new regulatory circuit with a key role in the conjugative transfer of rhizobial plasmids were discovered.
Collapse
Affiliation(s)
- Lucas G. Castellani
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet F. Nilsson
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ben Struck
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Bañuelos-Vazquez LA, Castellani LG, Luchetti A, Romero D, Torres Tejerizo GA, Brom S. Role of plant compounds in the modulation of the conjugative transfer of pRet42a. PLoS One 2020; 15:e0238218. [PMID: 32845909 PMCID: PMC7449395 DOI: 10.1371/journal.pone.0238218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023] Open
Abstract
One of the most studied mechanisms involved in bacterial evolution and diversification is conjugative transfer (CT) of plasmids. Plasmids able to transfer by CT often encode beneficial traits for bacterial survival under specific environmental conditions. Rhizobium etli CFN42 is a Gram-negative bacterium of agricultural relevance due to its symbiotic association with Phaseolus vulgaris through the formation of Nitrogen-fixing nodules. The genome of R. etli CFN42 consists of one chromosome and six large plasmids. Among these, pRet42a has been identified as a conjugative plasmid. The expression of the transfer genes is regulated by a quorum sensing (QS) system that includes a traI gene, which encodes an acyl-homoserine lactone (AHL) synthase and two transcriptional regulators (TraR and CinR). Recently, we have shown that pRet42a can perform CT on the root surface and inside nodules. The aim of this work was to determine the role of plant-related compounds in the CT of pRet42a. We found that bean root exudates or root and nodule extracts induce the CT of pRet42a in the plant rhizosphere. One possibility is that these compounds are used as nutrients, allowing the bacteria to increase their growth rate and reach the population density leading to the activation of the QS system in a shorter time. We tested if P. vulgaris compounds could substitute the bacterial AHL synthesized by TraI, to activate the conjugation machinery. The results showed that the transfer of pRet42a in the presence of the plant is dependent on the bacterial QS system, which cannot be substituted by plant compounds. Additionally, individual compounds of the plant exudates were evaluated; among these, some increased and others decreased the CT. With these results, we suggest that the plant could participate at different levels to modulate the CT, and that some compounds could be activating genes in the conjugation machinery.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lucas G. Castellani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gonzalo A. Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (SB); (GATT)
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (SB); (GATT)
| |
Collapse
|
4
|
Wathugala ND, Hemananda KM, Yip CB, Hynes MF. Defining the requirements for the conjugative transfer of Rhizobium leguminosarum plasmid pRleVF39b. MICROBIOLOGY-SGM 2020; 166:318-331. [PMID: 31935189 DOI: 10.1099/mic.0.000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobium leguminosarum strain VF39 contains a plasmid, pRleVF39b, which encodes a distinctive type of conjugation system (rhizobial type IVa) that is relatively widespread among rhizobial genomes. The cluster of genes encoding the transfer functions lacks orthologs to genes such as traCD, traF and traB, but contains 15 conserved genes of unknown function. We determined the importance of these genes in conjugation by constructing marked and unmarked mutations in each gene, and established that six genes, now designated trcA-F, played a significant role in plasmid transfer. Like the relaxase gene, traA, and the genes encoding the MPF system (trb genes), five of these genes, located in two divergently transcribed operons, are regulated by the Xre family repressor TrbR. The other gene, trcF encodes a protein with similarity to histidinol phosphatases, and its role in conjugation is unclear, but mutations in trcF are severely impaired for conjugation. TrcF does not play a role in regulation of other conjugation genes.
Collapse
Affiliation(s)
- N Dulmini Wathugala
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kasuni M Hemananda
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Cynthia B Yip
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Bie L, Fang M, Li Z, Wang M, Xu H. Identification and Characterization of New Resistance-Conferring SGI1s ( Salmonella Genomic Island 1) in Proteus mirabilis. Front Microbiol 2018; 9:3172. [PMID: 30619228 PMCID: PMC6305713 DOI: 10.3389/fmicb.2018.03172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) is a resistance-conferring chromosomal genomic island that contains an antibiotic resistance gene cluster. The international spread of SGI1-containing strains drew attention to the role of genomic islands in the dissemination of antibiotic resistance genes in Salmonella and other Gram-negative bacteria. In this study, five SGI1 variants conferring multidrug and heavy metal resistance were identified and characterized in Proteus mirabilis strains: SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48. The genetic structures of SGI1-PmCAU and SGI1-PmABB were identical to previously reported SGI1s, while structural analysis showed that SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48 are new SGI1 variants. SGI1-PmJN16 is derived from SGI1-Z with the MDR region containing a new gene cassette array dfrA12-orfF-aadA2-qacEΔ1-sul1-chrA-orf1. SGI1-PmJN40 has an unprecedented structure that contains two right direct repeat sequences separated by a transcriptional regulator-rich DNA fragment, and is predicted to form two different extrachromosomal mobilizable DNA circles for dissemination. SGI1-PmJN48 lacks a common ORF S044, and its right junction region exhibits a unique genetic organization due to the reverse integration of a P. mirabilis chromosomal gene cluster and the insertion of part of a P. mirabilis plasmid, making it the largest known SGI1 to date (189.1 kb). Further mobility functional analysis suggested that these SGIs can be excised from the chromosome for transfer between bacteria, which promotes the horizontal transfer of antibiotic and heavy metal resistance genes. The identification and characterization of the new SGI1 variants in this work suggested the diversity of SGI1 structures and their significant roles in the evolution of bacteria.
Collapse
Affiliation(s)
- Luyao Bie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhiqiang Li
- Advanced Research Center for Optics, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Complete sequences of two novel bla NDM-1-harbouring plasmids from two Acinetobacter towneri isolates in China associated with the acquisition of Tn125. Sci Rep 2017; 7:9405. [PMID: 28839253 PMCID: PMC5571222 DOI: 10.1038/s41598-017-09624-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022] Open
Abstract
Two novel New Delhi metallo-β-lactamase-1 (NDM-1)-positive plasmids containing a complete composite transposon, Tn125, from two respective Acinetobacter towneri isolates were characterized. Plasmid pNDM-GJ01 (30,293 bp) isolated from A. towneri G165 did not show homology to any known plasmid structure, except for the transposon Tn125 containing blaNDM-1. A novel repB gene and two XRE-type transcriptional regulators were found in pNDM-GJ01. Plasmid pNDM-GJ02 (62,011 bp) isolated from A. towneri G295 showed the highest homology to pBJAB0715 (41% coverage, 99% nucleotide identity). In addition to the blaNDM-1-harbouring transposon Tn125, pNDM-GJ02 also had an IS26-composite transposon, which contains ISCR1 and two class 1 integrons carrying different cassette arrays. Both clinical isolates were highly resistant to β-lactams and susceptible to tigecycline and colistin. Ten other resistance genes were detected in G295, and one other resistance gene was detected in G165. No transconjugant was obtained from any of the donors by broth and filter mating. The emergence of these two novel plasmids carrying NDM-1 in Acinetobacter spp., pNDM-GJ01 and pNDM-GJ02, suggests Tn125 mobile integration.
Collapse
|
7
|
Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME JOURNAL 2017; 11:2465-2478. [PMID: 28696422 PMCID: PMC5649159 DOI: 10.1038/ismej.2017.101] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/07/2017] [Accepted: 05/21/2017] [Indexed: 01/29/2023]
Abstract
Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.
Collapse
Affiliation(s)
- Beate M Slaby
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Department of Botany II, Julius-von-Sachs Institute for Biological Science, University of Würzburg, Würzburg, Germany
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannes Horn
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Department of Botany II, Julius-von-Sachs Institute for Biological Science, University of Würzburg, Würzburg, Germany
| | - Kristina Bayer
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Wang L, Lacroix B, Guo J, Citovsky V. Transcriptional Activation of Virulence Genes of Rhizobium etli. J Bacteriol 2017; 199:e00841-16. [PMID: 28069822 PMCID: PMC5331667 DOI: 10.1128/jb.00841-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 01/24/2023] Open
Abstract
Recently, Rhizobium etli, in addition to Agrobacterium spp., has emerged as a prokaryotic species whose genome encodes a functional machinery for DNA transfer to plant cells. To understand this R. etli-mediated genetic transformation, it would be useful to define how its vir genes respond to the host plants. Here, we explored the transcriptional activation of the vir genes contained on the R. etli p42a plasmid. Using a reporter construct harboring lacZ under the control of the R. etli virE promoter, we show that the signal phenolic molecule acetosyringone (AS) induces R. etli vir gene expression both in an R. etli background and in an Agrobacterium tumefaciens background. Furthermore, in both bacterial backgrounds, the p42a plasmid also promoted plant genetic transformation with a reporter transfer DNA (T-DNA). Importantly, the R. etli vir genes were transcriptionally activated by AS in a bacterial species-specific fashion in regard to the VirA/VirG signal sensor system, and this activation was induced by signals from the natural host species of this bacterium but not from nonhost plants. The early kinetics of transcriptional activation of the major vir genes of R. etli also revealed several features distinct from those known for A. tumefaciens: the expression of the virG gene reached saturation relatively quickly, and virB2, which in R. etli is located outside the virB operon, was expressed only at low levels and did not respond to AS. These differences in vir gene transcription may contribute to the lower efficiency of T-DNA transfer of R. etli p42a than of T-DNA transfer of pTiC58 of A. tumefaciensIMPORTANCE The region encoding homologs of Agrobacterium tumefaciens virulence genes in the Rhizobium etli CE3 p42a plasmid was the first endogenous virulence system encoded by the genome of a non-Agrobacterium species demonstrated to be functional in DNA transfer and stable integration into the plant cell genome. In this study, we explored the transcriptional regulation and induction of virulence genes in R. etli and show similarities to and differences from those of their A. tumefaciens counterparts, contributing to an understanding and a comparison of these two systems. Whereas most vir genes in R. etli follow an induction pattern similar to that of A. tumefaciens vir genes, a few significant differences may at least in part explain the variations in T-DNA transfer efficiency.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, Jiangsu Province, China
| | - Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, Jiangsu Province, China
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
| |
Collapse
|
9
|
Tu N, Carroll RK, Weiss A, Shaw LN, Nicolas G, Thomas S, Lima A, Okaro U, Anderson B. A family of genus-specific RNAs in tandem with DNA-binding proteins control expression of the badA major virulence factor gene in Bartonella henselae. Microbiologyopen 2016; 6. [PMID: 27790856 PMCID: PMC5387305 DOI: 10.1002/mbo3.420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022] Open
Abstract
Bartonella henselae is a gram‐negative zoonotic bacterium that causes infections in humans including endocarditis and bacillary angiomatosis. B. henselae has been shown to grow as large aggregates and form biofilms in vitro. The aggregative growth and the angiogenic host response requires the trimeric autotransporter adhesin BadA. We examined the transcriptome of the Houston‐1 strain of B. henselae using RNA‐seq revealing nine novel, highly‐expressed intergenic transcripts (Bartonella regulatory transcript, Brt1‐9). The Brt family of RNAs is unique to the genus Bartonella and ranges from 194 to 203 nucleotides with high homology and stable predicted secondary structures. Immediately downstream of each of the nine RNA genes is a helix‐turn‐helix DNA‐binding protein (transcriptional regulatory protein, Trp1‐9) that is poorly transcribed under the growth conditions used for RNA‐seq. Using knockdown or overexpressing strains, we show a role of both the Brt1 and Trp1 in the regulation of badA and also in biofilm formation. Based on these data, we hypothesize that Brt1 is a trans‐acting sRNA that also serves as a cis‐acting riboswitch to control the expression of badA. This family of RNAs together with the downstream Trp DNA‐binding proteins represents a novel coordinated regulatory circuit controlling expression of virulence‐associated genes in the bartonellae.
Collapse
Affiliation(s)
- Nhan Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Andy Weiss
- Department of Cellular, Molecular and Microbiology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cellular, Molecular and Microbiology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Gael Nicolas
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Thomas
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Amorce Lima
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Udoka Okaro
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Burt Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|