1
|
Luo R, Guan A, Ma B, Gao Y, Peng Y, He Y, Xu Q, Li K, Zhong Y, Luo R, Cao R, Jin H, Lin Y, Shang P. Developmental Dynamics of the Gut Virome in Tibetan Pigs at High Altitude: A Metagenomic Perspective across Age Groups. Viruses 2024; 16:606. [PMID: 38675947 PMCID: PMC11054254 DOI: 10.3390/v16040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.
Collapse
Affiliation(s)
- Runbo Luo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yanling He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Kexin Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Yanan Zhong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Ruibing Cao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yan Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| |
Collapse
|
2
|
Rubio-Portillo E, Robertson S, Antón J. Coral mucus as a reservoir of bacteriophages targeting Vibrio pathogens. THE ISME JOURNAL 2024; 18:wrae017. [PMID: 38366190 PMCID: PMC10945359 DOI: 10.1093/ismejo/wrae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
The increasing trend in sea surface temperature promotes the spread of Vibrio species, which are known to cause diseases in a wide range of marine organisms. Among these pathogens, Vibrio mediterranei has emerged as a significant threat, leading to bleaching in the coral species Oculina patagonica. Bacteriophages, or phages, are viruses that infect bacteria, thereby regulating microbial communities and playing a crucial role in the coral's defense against pathogens. However, our understanding of phages that infect V. mediterranei is limited. In this study, we identified two phage species capable of infecting V. mediterranei by utilizing a combination of cultivation and metagenomic approaches. These phages are low-abundance specialists within the coral mucus layer that exhibit rapid proliferation in the presence of their hosts, suggesting a potential role in coral defense. Additionally, one of these phages possesses a conserved domain of a leucine-rich repeat protein, similar to those harbored in the coral genome, that plays a key role in pathogen recognition, hinting at potential coral-phage coevolution. Furthermore, our research suggests that lytic Vibrio infections could trigger prophage induction, which may disseminate genetic elements, including virulence factors, in the coral mucus layer. Overall, our findings underscore the importance of historical coral-phage interactions as a form of coral immunity against invasive Vibrio pathogens.
Collapse
Affiliation(s)
- Esther Rubio-Portillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Sophia Robertson
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Multidisciplinary Institute of Environmental Studies Ramon Margalef, Alicante 03690, Spain
| |
Collapse
|
3
|
Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:171-206. [PMID: 37739555 DOI: 10.1016/bs.pmbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.
Collapse
Affiliation(s)
- Nikita Nikulin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Alexandra Nikulina
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Andrei Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
4
|
Yuan L, Ju F. Potential Auxiliary Metabolic Capabilities and Activities Reveal Biochemical Impacts of Viruses in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5485-5498. [PMID: 36947091 DOI: 10.1021/acs.est.2c07800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses influence biogeochemical cycles in oceans, freshwater, soil, and human gut through infection and by modulating virocell metabolism through virus-encoded auxiliary metabolic genes (vAMGs). However, the geographical distribution, potential metabolic function, and engineering significance of vAMGs in wastewater treatment plants (WWTPs) remain to be explored. Here, 752 single-contig viral genomes with high confidence, 510 of which belonged to Caudovirales, were recovered from the activated sludge metagenomes of 32 geographically distributed WWTPs. A total of 101 vAMGs involved in various metabolic pathways were identified, the most common of which were the queuosine biosynthesis genes folE, queD, and queE and the sulfur metabolism gene cysH. Phylogenetic analysis and virus-host relationship prediction revealed the probable evolutionary histories of vAMGs involved in carbon (acpP and prsA), nitrogen (amoC), sulfur (cysH), and phosphate (phoH) metabolism, which potentially mediate microbial carbon and nutrient cycling. Notably, 11 of the 38 (28.3%) vAMGs identified in the metagenomes with corresponding metatranscriptomes were transcriptionally expressed, implying an active functional state. This meta-analysis provides the first broad catalog of vAMGs in municipal WWTPs and how they may assist in the basic physiological reactions of their microbial hosts or nutrient cycling in the WWTPs, and therefore, may have important effects on the engineering of wastewater treatment processes.
Collapse
Affiliation(s)
- Ling Yuan
- Environmental Science and Engineering Department, Zhejiang University, Hangzhou 310012, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
5
|
Zang L, Liu Y, Song X, Cai L, Liu K, Luo T, Zhang R. Unique T4-like phages in high-altitude lakes above 4500 m on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149649. [PMID: 34428653 DOI: 10.1016/j.scitotenv.2021.149649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Viruses are the most abundant biological entities in the biosphere; however, little is known about viral ecology in high altitude lakes. Here, we characterized viruses from 13 lakes, nine of which located ≥4500 m above sea level, on the Tibetan Plateau, the highest plateau on Earth. The abundance of virus-like particle (VLP) in Tibetan lakes ranged from 4.8 ± 0.2 × 105 VLPs mL-1 to 6.0 ± 0.2 × 107 VLPs mL-1 and the virus-to-bacterium ratio was in the lower range of values reported for other lakes. The viral population size was positively correlated with turbidity and negatively correlated with particulate organic carbon concentration. Highly diverse VLP morphologies, including large (~300 nm) morphotypes, were observed. Phylogenetic analysis of T4-like bacteriophages based on major capsid gene (g23) identified a novel viral group, which were detected in abundance in hyposaline and mesosaline Tibetan lakes. Adaptation to lake evolution, water source (glacier-fed or non-glacier-fed) and environmental conditions (e.g., salinity, phosphorus concentration and productivity) are likely responsible for the variation in T4-like myovirus community composition in contrasting Tibetan lakes. This first investigation of viruses in high-altitude alpine lakes above 4500 m could contribute to our understanding of viral ecology in global alpine lakes.
Collapse
Affiliation(s)
- Lin Zang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Science, Beijing 100101, China.
| | - Xuanying Song
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
6
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
7
|
Wei X, Ge T, Wu C, Wang S, Mason-Jones K, Li Y, Zhu Z, Hu Y, Liang C, Shen J, Wu J, Kuzyakov Y. T4-like Phages Reveal the Potential Role of Viruses in Soil Organic Matter Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6440-6448. [PMID: 33852292 DOI: 10.1021/acs.est.0c06014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viruses are the most abundant biological entities in the world, but their ecological functions in soil are virtually unknown. We hypothesized that greater abundance of T4-like phages will increase bacterial death and thereby suppress soil organic carbon (SOC) mineralization. A range of phage and bacterial abundances were established in sterilized soil by reinoculation with 10-3 and 10-6 dilutions of suspensions of unsterilized soil. The total and viable 16S rRNA gene abundance (a universal marker for bacteria) was measured by qPCR to determine bacterial abundance, with propidium monoazide (PMA) preapplication to eliminate DNA from non-viable cells. Abundance of the g23 marker gene was used to quantify T4-like phages. A close negative correlation between g23 abundance and viable 16S rRNA gene abundance was observed. High abundance of g23 led to lower viable ratios for bacteria, which suggested that phages drove microbial necromass production. The CO2 efflux from soil increased with bacterial abundance but decreased with higher abundance of T4-like phages. Elimination of extracellular DNA by PMA strengthened the relationship between CO2 efflux and bacterial abundance, suggesting that SOC mineralization by bacteria is strongly reduced by the T4-like phages. A random forest model revealed that abundance of T4-like phages and the abundance ratio of T4-like phages to bacteria are better predictors of SOC mineralization (measured as CO2 efflux) than bacterial abundance. Our study provides experimental evidence of phages' role in organic matter turnover in soil: they can retard SOC decomposition but accelerate bacterial turnover.
Collapse
Affiliation(s)
- Xiaomeng Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 106708, The Netherlands
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhenke Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - JianLin Shen
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen 37073, Germany
- Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| |
Collapse
|
8
|
Nikulin NA, Zimin AA. Influence of Non-canonical DNA Bases on the Genomic Diversity of Tevenvirinae. Front Microbiol 2021; 12:632686. [PMID: 33889139 PMCID: PMC8056088 DOI: 10.3389/fmicb.2021.632686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 12/03/2022] Open
Abstract
The Tevenvirinae viruses are some of the most common viruses on Earth. Representatives of this subfamily have long been used in the molecular biology studies as model organisms – since the emergence of the discipline. Tevenvirinae are promising agents for phage therapy in animals and humans, since their representatives have only lytic life cycle and many of their host bacteria are pathogens. As confirmed experimentally, some Tevenvirinae have non-canonical DNA bases. Non-canonical bases can play an essential role in the diversification of closely related viruses. The article performs a comparative and evolutionary analysis of Tevenvirinae genomes and components of Tevenvirinae genomes. A comparative analysis of these genomes and the genes associated with the synthesis of non-canonical bases allows us to conclude that non-canonical bases have a major influence on the divergence of Tevenvirinae viruses within the same habitats. Supposedly, Tevenvirinae developed a strategy for changing HGT frequency in individual populations, which was based on the accumulation of proteins for the synthesis of non-canonical bases and proteins that used those bases as substrates. Owing to this strategy, ancestors of Tevenvirinae with the highest frequency of HGT acquired genes that allowed them to exist in a certain niche, and ancestors with the lowest HGT frequency preserved the most adaptive of those genes. Given the origin and characteristics of genes associated with the synthesis of non-canonical bases in Tevenvirinae, one can assume that other phages may have similar strategies. The article demonstrates the dependence of genomic diversity of closely related Tevenvirinae on non-canonical bases.
Collapse
Affiliation(s)
- Nikita A Nikulin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Andrei A Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
9
|
Tominaga K, Morimoto D, Nishimura Y, Ogata H, Yoshida T. In silico Prediction of Virus-Host Interactions for Marine Bacteroidetes With the Use of Metagenome-Assembled Genomes. Front Microbiol 2020; 11:738. [PMID: 32411107 PMCID: PMC7198788 DOI: 10.3389/fmicb.2020.00738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteroidetes is one of the most abundant heterotrophic bacterial taxa in the ocean and play crucial roles in recycling phytoplankton-derived organic matter. Viruses of Bacteroidetes are also expected to have an important role in the regulation of host communities. However, knowledge on marine Bacteroidetes viruses is biased toward cultured viruses from a few species, mainly fish pathogens or Bacteroidetes not abundant in marine environments. In this study, we investigated the recently reported 1,811 marine viral genomes to identify putative Bacteroidetes viruses using various in silico host prediction techniques. Notably, we used microbial metagenome-assembled genomes (MAGs) to augment the marine Bacteroidetes reference genomic data. The examined viral genomes and MAGs were derived from simultaneously collected samples. Using nucleotide sequence similarity-based host prediction methods, we detected 31 putative Bacteroidetes viral genomes. The MAG-based method substantially enhanced the predictions (26 viruses) when compared with the method that is solely based on the reference genomes from NCBI RefSeq (7 viruses). Previously unrecognized genus-level groups of Bacteroidetes viruses were detected only by the MAG-based method. We also developed a host prediction method based on the proportion of Bacteroidetes homologs in viral genomes, which detected 321 putative Bacteroidetes virus genomes including 81 that were newly recognized as Bacteroidetes virus genomes. The majority of putative Bacteroidetes viruses were detected based on the proportion of Bacteroidetes homologs in both RefSeq and MAGs; however, some were detected in only one of the two datasets. Putative Bacteroidetes virus lineages included not only relatives of known viruses but also those phylogenetically distant from the cultured viruses, such as marine Far-T4 like viruses known to be widespread in aquatic environments. Our MAG and protein homology-based host prediction approaches enhanced the existing knowledge on the diversity of Bacteroidetes viruses and their potential interaction with their hosts in marine environments.
Collapse
Affiliation(s)
- Kento Tominaga
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Hiroyuki Ogata
- Chemical Life Science, Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
White Iii RA, Wong HL, Ruvindy R, Neilan BA, Burns BP. Viral Communities of Shark Bay Modern Stromatolites. Front Microbiol 2018; 9:1223. [PMID: 29951046 PMCID: PMC6008428 DOI: 10.3389/fmicb.2018.01223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/22/2018] [Indexed: 01/21/2023] Open
Abstract
Single stranded DNA viruses have been previously shown to populate the oceans on a global scale, and are endemic in microbialites of both marine and freshwater systems. We undertook for the first time direct viral metagenomic shotgun sequencing to explore the diversity of viruses in the modern stromatolites of Shark Bay Australia. The data indicate that Shark Bay marine stromatolites have similar diversity of ssDNA viruses to that of Highbourne Cay, Bahamas. ssDNA viruses in cluster uniquely in Shark Bay and Highbourne Cay, potentially due to enrichment by phi29-mediated amplification bias. Further, pyrosequencing data was assembled from the Shark Bay systems into two putative viral genomes that are related to Genomoviridae family of ssDNA viruses. In addition, the cellular fraction was shown to be enriched for antiviral defense genes including CRISPR-Cas, BREX (bacteriophage exclusion), and DISARM (defense island system associated with restriction-modification), a potentially novel finding for these systems. This is the first evidence for viruses in the Shark Bay stromatolites, and these viruses may play key roles in modulating microbial diversity as well as potentially impacting ecosystem function through infection and the recycling of key nutrients.
Collapse
Affiliation(s)
- Richard Allen White Iii
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.,Crop and Soil Sciences, Washington State University, Pullman, WA, United States.,Plant Pathology, Washington State University, Pullman, WA, United States.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,RAW Molecular Systems (RMS) LLC, Spokane, WA, United States
| | - Hon L Wong
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Rendy Ruvindy
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Brett A Neilan
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Analysis of 19 Highly Conserved Vibrio cholerae Bacteriophages Isolated from Environmental and Patient Sources Over a Twelve-Year Period. Viruses 2018; 10:v10060299. [PMID: 29857590 PMCID: PMC6024749 DOI: 10.3390/v10060299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
The Vibrio cholerae biotype “El Tor” is responsible for all of the current epidemic and endemic cholera outbreaks worldwide. These outbreaks are clonal, and it is hypothesized that they originate from the coastal areas near the Bay of Bengal, where the lytic bacteriophage ICP1 (International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) specifically preys upon these pathogenic outbreak strains. ICP1 has also been the dominant bacteriophage found in cholera patient stools since 2001. However, little is known about the genomic differences between the ICP1 strains that have been collected over time. Here, we elucidate the pan-genome and the phylogeny of the ICP1 strains by aligning, annotating, and analyzing the genomes of 19 distinct isolates that were collected between 2001 and 2012. Our results reveal that the ICP1 isolates are highly conserved and possess a large core-genome as well as a smaller, somewhat flexible accessory-genome. Despite its overall conservation, ICP1 strains have managed to acquire a number of unknown genes, as well as a CRISPR-Cas system which is known to be critical for its ongoing struggle for co-evolutionary dominance over its host. This study describes a foundation on which to construct future molecular and bioinformatic studies of these V. cholerae-associated bacteriophages.
Collapse
|
12
|
Potapov S, Belykh O, Krasnopeev A, Gladkikh A, Kabilov M, Tupikin A, Butina T. Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. FEMS Microbiol Lett 2018; 365:4693836. [PMID: 29228190 DOI: 10.1093/femsle/fnx264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Based on second generation sequencing (MiSeq platform, Illumina), we determined the genetic diversity of T4-like bacteriophages of the family Myoviridae by analysing fragments of the major capsid protein gene g23 in the plankton of Lake Baikal. The sampling depth in our study was significantly higher than in those obtained by the Sanger method before. We obtained 33 701 sequences of the g23 gene fragments, 141 operational taxonomic units (OTUs) of which were identified. 86 OTUs (60.9%) had the closest relatives from lakes Bourget and Annecy, and 28 OTUs (19.8%) had the highest identity with the Baikal g23 clones, which had been previously identified in the northern and southern basins of the lake by the Sanger method. The remaining OTUs were similar to the clones from other ecosystems. We showed a high genetic diversity of T4-type bacteriophages and a genetic difference with the phage communities from other ecosystems.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Olga Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Andrey Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Anna Gladkikh
- Laboratory of Cholera, Irkutsk Antiplague Research Institute of Siberia and Far East, Irkutsk 664047, Russia
| | - Marsel Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Aleksey Tupikin
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatyana Butina
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| |
Collapse
|
13
|
Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. MICROBIOME 2017; 5:155. [PMID: 29179741 PMCID: PMC5704599 DOI: 10.1186/s40168-017-0374-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Rumen microbes play a greater role in host energy acquisition than that of gut-associated microbes in monogastric animals. Although genome-enabled advancements are providing access to the vast diversity of uncultivated microbes, our understanding of variables shaping rumen microbial communities is in its infancy. Viruses have been shown to impact microbial populations through a myriad of processes, including cell lysis and reprogramming of host metabolism. However, little is known about the processes shaping the distribution of rumen viruses or how viruses may modulate microbial-driven processes in the rumen. To this end, we investigated how rumen bacterial and viral community structure and function responded in five steers fed four randomized dietary treatments in a crossover design. RESULTS Total digestible nutrients (TDN), a measure of dietary energy, best explained the variation in bacterial and viral communities. Additional ecological drivers of viral communities included dietary zinc content and microbial functional diversity. Using partial least squares regression, we demonstrate significant associations between the abundances of 267 viral populations and variables driving the variation in rumen viral communities. While rumen viruses were dynamic, 14 near ubiquitous viral populations were identified, suggesting the presence of a core rumen virome largely comprised of novel viruses. Moreover, analysis of virally encoded auxiliary metabolic genes (AMGs) indicates rumen viruses have glycosidic hydrolases to potentially augment the breakdown of complex carbohydrates to increase energy production. Other AMGs identified have a role in redirecting carbon to the pentose phosphate pathway and one carbon pools by folate to boost viral replication. CONCLUSIONS We demonstrate that rumen bacteria and viruses have differing responses and ecological drivers to dietary perturbation. Our results show that rumen viruses have implications for understanding the structuring of the previously identified core rumen microbiota and impacting microbial metabolism through a vast array of AMGs. AMGs in the rumen appear to have consequences for microbial metabolism that are largely in congruence with the current paradigm established in marine systems. This study provides a foundation for future hypotheses regarding the dynamics of viral-mediated processes in the rumen.
Collapse
Affiliation(s)
- Christopher L. Anderson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
- Department of Animal Science, University of Nebraska-Lincoln, C220K Animal Science Complex, Lincoln, NE 68583-0908 USA
| | - Matthew B. Sullivan
- Departments of Microbiology, and Civil, Environmental and Geodetic Engineering, The Ohio State University, Riffe Building 266, 496 W 12th Ave, Columbus, OH 43210 USA
| | - Samodha C. Fernando
- Department of Animal Science, University of Nebraska-Lincoln, C220K Animal Science Complex, Lincoln, NE 68583-0908 USA
| |
Collapse
|
14
|
Yang Y, Cai L, Ma R, Xu Y, Tong Y, Huang Y, Jiao N, Zhang R. A Novel Roseosiphophage Isolated from the Oligotrophic South China Sea. Viruses 2017; 9:v9050109. [PMID: 28505134 PMCID: PMC5454422 DOI: 10.3390/v9050109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
The Roseobacter clade is abundant and widespread in marine environments and plays an important role in oceanic biogeochemical cycling. In this present study, a lytic siphophage (labeled vB_DshS-R5C) infecting the strain type of Dinoroseobacter shibae named DFL12T, which is part of the Roseobacter clade, was isolated from the oligotrophic South China Sea. Phage R5C showed a narrow host range, short latent period and low burst size. The genome length of phage R5C was 77, 874 bp with a G+C content of 61.5%. Genomic comparisons detected no genome matches in the GenBank database and phylogenetic analysis based on DNA polymerase I revealed phylogenetic features that were distinct to other phages, suggesting the novelty of R5C. Several auxiliary metabolic genes (e.g., phoH gene, heat shock protein and queuosine biosynthesis genes) were identified in the R5C genome that may be beneficial to the host and/or offer a competitive advantage for the phage. Among siphophages infecting the Roseobacter clade (roseosiphophages), four gene transfer agent-like genes were commonly located with close proximity to structural genes, suggesting that their function may be related to the tail of siphoviruses. The isolation and characterization of R5C demonstrated the high genomic and physiological diversity of roseophages as well as improved our understanding of host-phage interactions and the ecology of the marine Roseobacter.
Collapse
Affiliation(s)
- Yunlan Yang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Yigang Tong
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Yong Huang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| |
Collapse
|
15
|
Bolduc B, Jang HB, Doulcier G, You ZQ, Roux S, Sullivan MB. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 2017; 5:e3243. [PMID: 28480138 PMCID: PMC5419219 DOI: 10.7717/peerj.3243] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022] Open
Abstract
Taxonomic classification of archaeal and bacterial viruses is challenging, yet also fundamental for developing a predictive understanding of microbial ecosystems. Recent identification of hundreds of thousands of new viral genomes and genome fragments, whose hosts remain unknown, requires a paradigm shift away from traditional classification approaches and towards the use of genomes for taxonomy. Here we revisited the use of genomes and their protein content as a means for developing a viral taxonomy for bacterial and archaeal viruses. A network-based analytic was evaluated and benchmarked against authority-accepted taxonomic assignments and found to be largely concordant. Exceptions were manually examined and found to represent areas of viral genome 'sequence space' that are under-sampled or prone to excessive genetic exchange. While both cases are poorly resolved by genome-based taxonomic approaches, the former will improve as viral sequence space is better sampled and the latter are uncommon. Finally, given the largely robust taxonomic capabilities of this approach, we sought to enable researchers to easily and systematically classify new viruses. Thus, we established a tool, vConTACT, as an app at iVirus, where it operates as a fast, highly scalable, user-friendly app within the free and powerful CyVerse cyberinfrastructure.
Collapse
Affiliation(s)
- Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| | - Ho Bin Jang
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| | - Guilhem Doulcier
- Institut de Biologie de l’ENS (IBENS), École normale supérieure, PSL Research University, Paris, France
- ESPCI, PSL Research University, Paris, France
| | - Zhi-Qiang You
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Simon Roux
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
How to Name and Classify Your Phage: An Informal Guide. Viruses 2017; 9:v9040070. [PMID: 28368359 PMCID: PMC5408676 DOI: 10.3390/v9040070] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022] Open
Abstract
With this informal guide, we try to assist both new and experienced phage researchers through two important stages that follow phage discovery; that is, naming and classification. Providing an appropriate name for a bacteriophage is not as trivial as it sounds, and the effects might be long-lasting in databases and in official taxon names. Phage classification is the responsibility of the Bacterial and Archaeal Viruses Subcommittee (BAVS) of the International Committee on the Taxonomy of Viruses (ICTV). While the BAVS aims at providing a holistic approach to phage taxonomy, for individual researchers who have isolated and sequenced a new phage, this can be a little overwhelming. We are now providing these researchers with an informal guide to phage naming and classification, taking a “bottom-up” approach from the phage isolate level.
Collapse
|
17
|
Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol 2016; 31:161-168. [DOI: 10.1016/j.mib.2016.04.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/19/2022]
|
18
|
Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid. J Virol 2015; 89:10945-58. [PMID: 26311868 PMCID: PMC4621102 DOI: 10.1128/jvi.01353-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/10/2015] [Indexed: 01/21/2023] Open
Abstract
Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.
Collapse
|