1
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
de Medeiros LS, de Araújo Júnior MB, Peres EG, da Silva JCI, Bassicheto MC, Di Gioia G, Veiga TAM, Koolen HHF. Discovering New Natural Products Using Metabolomics-Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:185-224. [PMID: 37843810 DOI: 10.1007/978-3-031-41741-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The incessant search for new natural molecules with biological activities has forced researchers in the field of chemistry of natural products to seek different approaches for their prospection studies. In particular, researchers around the world are turning to approaches in metabolomics to avoid high rates of re-isolation of certain compounds, something recurrent in this branch of science. Thanks to the development of new technologies in the analytical instrumentation of spectroscopic and spectrometric techniques, as well as the advance in the computational processing modes of the results, metabolomics has been gaining more and more space in studies that involve the prospection of natural products. Thus, this chapter summarizes the precepts and good practices in the metabolomics of microbial natural products using mass spectrometry and nuclear magnetic resonance spectroscopy, and also summarizes several examples where this approach has been applied in the discovery of bioactive molecules.
Collapse
Affiliation(s)
- Lívia Soman de Medeiros
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Moysés B de Araújo Júnior
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eldrinei G Peres
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Milena Costa Bassicheto
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Giordanno Di Gioia
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago André Moura Veiga
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | | |
Collapse
|
3
|
Abstract
Plant-derived biomass is the most abundant biogenic carbon source on Earth. Despite this, only a small clade of organisms known as white-rot fungi (WRF) can efficiently break down both the polysaccharide and lignin components of plant cell walls. This unique ability imparts a key role for WRF in global carbon cycling and highlights their potential utilization in diverse biotechnological applications. To date, research on WRF has primarily focused on their extracellular ‘digestive enzymes’ whereas knowledge of their intracellular metabolism remains underexplored. Systems biology is a powerful approach to elucidate biological processes in numerous organisms, including WRF. Thus, here we review systems biology methods applied to WRF to date, highlight observations related to their intracellular metabolism, and conduct comparative extracellular proteomic analyses to establish further correlations between WRF species, enzymes, and cultivation conditions. Lastly, we discuss biotechnological opportunities of WRF as well as challenges and future research directions.
Collapse
|
4
|
Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr 2022; 63:10047-10078. [PMID: 35531939 DOI: 10.1080/10408398.2022.2068124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enantiomeric pure and natural (+)-Lactones (C ≤ 14) with aromas obtained from fruits and milk are considered flavoring compounds. The flavoring value is related to the lactones' ring size and chain length, which blend in varying concentrations to produce different stone-fruit flavors. The nature-identical and enantiomeric pure (+)-lactones are only produced through whole-cell biotransformation of yeast. The industrially important γ-decalactone and δ-decalactone are produced by a four-step aerobic-oxidation of ricinoleic acid (RA) following the lactonization mechanism. Recently, metabolic engineering strategies have opened up new possibilities for increasing productivity. Another strategy for increasing yield is to immobilize the RA and remove lactones from the broth regularly. Besides flavor impact, γ-, δ-, ε-, ω-lactones of the carbon chain (C8-C12), the macro-lactones and their derivatives are vital in pharmaceuticals and healthcare. These analogues are isolated from natural sources or commercially produced via biotransformation and chemical synthesis processes for medicinal use or as active pharmaceutical ingredients. The various approaches to biotransformation have been discussed in this review to generate more prospects from a commercial point of view. Finally, this work will be regarded as a magical brick capable of containing both traditional and genetic engineering technology while contributing to a wide range of commercial applications.
Collapse
Affiliation(s)
- Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
6
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
7
|
Sang X, Yang M, Su J. Research on endophytic fungi for producing huperzine A on a large-scale. Crit Rev Microbiol 2020; 46:654-664. [PMID: 32970952 DOI: 10.1080/1040841x.2020.1819771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Huperzine A (HupA) is an effective inhibitor of acetylcholinesterase and has attracted great interest as a therapeutic candidate for Alzheimer's disease. However, the use of HupA is limited by resource scarcity as well as by its low yields from Huperzia serrata, its primary plant source. Recent studies have shown that this compound is produced by various endophytic fungi, thereby providing a promising alternative source, as fungi are much more amenable than plants owing to their simpler genetics and the ease of manipulation. In this review, we summarize the progress in research on the methods to increase HupA production, including fermentation conditions, fungal elicitors, gene expression, and the activation of key enzymes. This review provides guidance for further studies on HupA-producing endophytic fungi aimed at efficient HupA synthesis and accumulation, and offers new approaches for studies on the regulation of high-value bioactive secondary metabolites.
Collapse
Affiliation(s)
- Xiao Sang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, PR China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, PR China
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, PR China
| |
Collapse
|
8
|
Salwan R, Sharma A, Sharma V. Recent Advances in Molecular Approaches for Mining Potential Candidate Genes of Trichoderma for Biofuel. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Zhu F, Zhao X, Li J, Guo L, Bai L, Qi X. A new compound Trichomicin exerts antitumor activity through STAT3 signaling inhibition. Biomed Pharmacother 2019; 121:109608. [PMID: 31707338 DOI: 10.1016/j.biopha.2019.109608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/24/2022] Open
Abstract
Trichomicin, a novel small-molecule compound isolated from the fungus Trichoderma harzianum and identified as new structure compound, exhibited antitumor activities in various human cancer cell lines and reversed drug resistance activity in the multidrug-resistant cancer cell line KBV. The underlying cellular and molecular mechanism was illuminated. Trichomicin can significantly induce cancer cell apoptosis and reduced IL-6 expression and phosphorylation of STAT3 were found in response to Trichomicin treatment. The blockade of IL-6 mediated JAK-STAT3 signaling pathway by Trichomicin was confirmed using reporter gene system. As a promising antitumor-activity compound, Trichomicin is presented in this study.
Collapse
Affiliation(s)
- Fengchang Zhu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Chinese Pharmaceutical Association, Beijing, 100050, China
| | - Xi Zhao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Junping Li
- Sport Science College of Beijing Sport University, Beijing, 100084, China
| | - Lianhong Guo
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoqiang Qi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Department of Surgery and Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, United States.
| |
Collapse
|
10
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
11
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
12
|
Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi. mSystems 2019; 4:mSystems00012-19. [PMID: 31020039 PMCID: PMC6469955 DOI: 10.1128/msystems.00012-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/16/2019] [Indexed: 01/16/2023] Open
Abstract
Filamentous fungi possess great potential as sources of medicinal bioactive compounds, such as antibiotics, but efficient production is hampered by a limited understanding of how their metabolism is regulated. We investigated the metabolism of six secondary metabolite-producing fungi of the Penicillium genus during nutrient depletion in the stationary phase of batch fermentations and assessed conserved metabolic responses across species using genome-wide transcriptional profiling. A coexpression analysis revealed that expression of biosynthetic genes correlates with expression of genes associated with pathways responsible for the generation of precursor metabolites for secondary metabolism. Our results highlight the main metabolic routes for the supply of precursors for secondary metabolism and suggest that the regulation of fungal metabolism is tailored to meet the demands for secondary metabolite production. These findings can aid in identifying fungal species that are optimized for the production of specific secondary metabolites and in designing metabolic engineering strategies to develop high-yielding fungal cell factories for production of secondary metabolites. IMPORTANCE Secondary metabolites are a major source of pharmaceuticals, especially antibiotics. However, the development of efficient processes of production of secondary metabolites has proved troublesome due to a limited understanding of the metabolic regulations governing secondary metabolism. By analyzing the conservation in gene expression across secondary metabolite-producing fungal species, we identified a metabolic signature that links primary and secondary metabolism and that demonstrates that fungal metabolism is tailored for the efficient production of secondary metabolites. The insight that we provide can be used to develop high-yielding fungal cell factories that are optimized for the production of specific secondary metabolites of pharmaceutical interest.
Collapse
|
13
|
Vrancheva R, Ivanov I, Aneva I, Stoyanova M, Pavlov A. Food additives and bioactive substances from in vitro systems of edible plants from the Balkan peninsula. Eng Life Sci 2018; 18:799-806. [PMID: 32624873 DOI: 10.1002/elsc.201800063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 11/07/2022] Open
Abstract
During the last few years there is an increasing demand to the natural biologically active compounds. According to the World Health Organization (WHO) about 11% of the conventional medicines are of plant origin. Nowadays, plant biotechnologies are modern and reliable tool for producing valuable bioactive compounds. Recently, the potential of plant cells as foods also was confirmed. The advantages of plant in vitro systems over the intact plants are well known: growing under controlled and optimized laboratory conditions; independence of climatic and soil differences; preservation of rare and endangered plant species; cultivation in diverse bioreactor systems for increasing production yields of target metabolites. There have been developed many in vitro systems for production of various plant bioactive compounds with potential application in food industries. But potential for industrial implementation of this technology depends on solving problems with the scale-up of bioreactor cultivation, development of additional approaches for improving/modification of bioactivities of the target plant secondary metabolites, and to find way to exclude or replace in the culture media the carcinogenic plant growth regulator 2,4-dichlorophenoxyacetic acid (2,4-D) with its safety analogs, such as α-naphtaleneacetic acid (NAA) and/or indole-3-butyric acid (IBA). The aim of the current mini review is to summarize information about different in vitro systems of edible plants from the Balkan Peninsula with potential for producing food additives and biologically active substances and to describe prospects for successful industrial implementation of this technology.
Collapse
Affiliation(s)
- Radka Vrancheva
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Atanas Pavlov
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria.,Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria
| |
Collapse
|
14
|
Hernanz-Koers M, Gandía M, Garrigues S, Manzanares P, Yenush L, Orzaez D, Marcos JF. FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology. Fungal Genet Biol 2018; 116:51-61. [DOI: 10.1016/j.fgb.2018.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
|
15
|
Gilchrist CLM, Li H, Chooi YH. Panning for gold in mould: can we increase the odds for fungal genome mining? Org Biomol Chem 2018; 16:1620-1626. [DOI: 10.1039/c7ob03127k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A perspective on existing and emerging strategies for the prioritisation of secondary metabolite biosynthetic gene clusters (BGCs) to increase the odds of fruitful mining of fungal genomes.
Collapse
Affiliation(s)
| | - Hang Li
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| |
Collapse
|
16
|
French KE. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health. Front Microbiol 2017; 8:1403. [PMID: 28785256 PMCID: PMC5519612 DOI: 10.3389/fmicb.2017.01403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to ensure this important agricultural and biotechnological resource for the future.
Collapse
|
17
|
Weber J, Valiante V, Nødvig CS, Mattern DJ, Slotkowski RA, Mortensen UH, Brakhage AA. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing. ACS Synth Biol 2017; 6:62-68. [PMID: 27611015 DOI: 10.1021/acssynbio.6b00203] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.
Collapse
Affiliation(s)
- Jakob Weber
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Vito Valiante
- Leibniz
Research Group − Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Christina S. Nødvig
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Derek J. Mattern
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rebecca A. Slotkowski
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Uffe H. Mortensen
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Axel A. Brakhage
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
18
|
Leitão AL, Costa MC, Enguita FJ. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. J Biotechnol 2016; 241:50-60. [PMID: 27845165 DOI: 10.1016/j.jbiotec.2016.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Genome engineering is a branch of modern biotechnology composed of a cohort of protocols designed to construct and modify a genotype with the main objective of giving rise to a desired phenotype. Conceptually, genome engineering is based on the so called genome editing technologies, a group of genetic techniques that allow either to delete or to insert genetic information in a particular genomic locus. Ten years ago, genome editing tools were limited to virus-driven integration and homologous DNA recombination. However, nowadays the uprising of programmable nucleases is rapidly changing this paradigm. There are two main families of modern tools for genome editing depending on the molecule that controls the specificity of the system and drives the editor machinery to its place of action. Enzymes such as Zn-finger and TALEN nucleases are protein-driven genome editors; while CRISPR system is a nucleic acid-guided editing system. Genome editing techniques are still not widely applied for the design of new compounds with pharmacological activity, but they are starting to be considered as promising tools for rational genome manipulation in biotechnology applications. In this review we will discuss the potential applications of programmable nucleases for the metabolic engineering of secondary metabolites with biological activity.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal; MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
19
|
Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites. Sci Rep 2016; 6:35112. [PMID: 27739446 PMCID: PMC5064400 DOI: 10.1038/srep35112] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023] Open
Abstract
A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species.
Collapse
|
20
|
Martinez OF, Agbale CM, Nomiyama F, Franco OL. Deciphering bioactive peptides and their action mechanisms through proteomics. Expert Rev Proteomics 2016; 13:1007-1016. [PMID: 27650042 DOI: 10.1080/14789450.2016.1238305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive peptides such as antimicrobial peptides (AMPs), ribosomally synthesized and post translationally modified peptides (RiPPs) and the non-ribosomal peptides (NRPs) have emerged with promising applications in medicine, agriculture and industry. However, their development has been limited by several difficulties making it necessary to search for novel discovery methods. In this context, proteomics has been considered a reliable tool. Areas covered: This review highlights recent developments in proteomic tools that facilitate the discovery of AMPs, RiPPs and NRPs as well as the elucidation of action mechanisms of AMPs and resistance mechanisms of pathogens to them. Expert commentary: Proteomic approaches have emerged as useful tools for the study of bioactive peptides, especially mass spectrometry-based peptidomics profiling, a promising strategy for AMP discovery. Furthermore, the rapidly expanding fields of genome mining and genome sequencing techniques, as well as mass spectrometry, have revolutionized the discovery of novel RiPPs and NRPs from complex biological samples.
Collapse
Affiliation(s)
- Osmel Fleitas Martinez
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Caleb Mawuli Agbale
- c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil.,d Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Fernanda Nomiyama
- b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Octávio Luiz Franco
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil.,c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil
| |
Collapse
|
21
|
Li YF, Tsai KJS, Harvey CJB, Li JJ, Ary BE, Berlew EE, Boehman BL, Findley DM, Friant AG, Gardner CA, Gould MP, Ha JH, Lilley BK, McKinstry EL, Nawal S, Parry RC, Rothchild KW, Silbert SD, Tentilucci MD, Thurston AM, Wai RB, Yoon Y, Aiyar RS, Medema MH, Hillenmeyer ME, Charkoudian LK. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol 2016; 89:18-28. [PMID: 26808821 DOI: 10.1016/j.fgb.2016.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and synthetic biology efforts toward discovering novel fungal enzymes and metabolites.
Collapse
Affiliation(s)
- Yong Fuga Li
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States; Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Kathleen J S Tsai
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Colin J B Harvey
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States
| | - James Jian Li
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States
| | - Beatrice E Ary
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Erin E Berlew
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Brenna L Boehman
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - David M Findley
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Alexandra G Friant
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | | | - Michael P Gould
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Jae H Ha
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Brenna K Lilley
- Department of Biology, Haverford College, Haverford, PA, United States
| | - Emily L McKinstry
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Saadia Nawal
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Robert C Parry
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | | | - Samantha D Silbert
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | | | - Alana M Thurston
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Rebecca B Wai
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Yongjin Yoon
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Raeka S Aiyar
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, The Netherlands
| | - Maureen E Hillenmeyer
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States.
| | | |
Collapse
|
22
|
van der Lee TAJ, Medema MH. Computational strategies for genome-based natural product discovery and engineering in fungi. Fungal Genet Biol 2016; 89:29-36. [PMID: 26775250 DOI: 10.1016/j.fgb.2016.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
Fungal natural products possess biological activities that are of great value to medicine, agriculture and manufacturing. Recent metagenomic studies accentuate the vastness of fungal taxonomic diversity, and the accompanying specialized metabolic diversity offers a great and still largely untapped resource for natural product discovery. Although fungal natural products show an impressive variation in chemical structures and biological activities, their biosynthetic pathways share a number of key characteristics. First, genes encoding successive steps of a biosynthetic pathway tend to be located adjacently on the chromosome in biosynthetic gene clusters (BGCs). Second, these BGCs are often are located on specific regions of the genome and show a discontinuous distribution among evolutionarily related species and isolates. Third, the same enzyme (super)families are often involved in the production of widely different compounds. Fourth, genes that function in the same pathway are often co-regulated, and therefore co-expressed across various growth conditions. In this mini-review, we describe how these partly interlinked characteristics can be exploited to computationally identify BGCs in fungal genomes and to connect them to their products. Particular attention will be given to novel algorithms to identify unusual classes of BGCs, as well as integrative pan-genomic approaches that use a combination of genomic and metabolomic data for parallelized natural product discovery across multiple strains. Such novel technologies will not only expedite the natural product discovery process, but will also allow the assembly of a high-quality toolbox for the re-design or even de novo design of biosynthetic pathways using synthetic biology approaches.
Collapse
Affiliation(s)
- Theo A J van der Lee
- Biointeractions & Plant Health, Plant Research International, Wageningen UR, Wageningen, The Netherlands.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Abstract
The practice of medicine was profoundly transformed by the introduction of the antibiotics (compounds isolated from Nature) and the antibacterials (compounds prepared by synthesis) for the control of bacterial infection. As a result of the extraordinary success of these compounds over decades of time, a timeless biological activity for these compounds has been presumed. This presumption is no longer. The inexorable acquisition of resistance mechanisms by bacteria is retransforming medical practice. Credible answers to this dilemma are far better recognized than they are being implemented. In this perspective we examine (and in key respects, reiterate) the chemical and biological strategies being used to address the challenge of bacterial resistance.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| |
Collapse
|
24
|
Abstract
Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell-cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity.
Collapse
Affiliation(s)
| | - Pablo Carbonell
- Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Experimental and Health Sciences (DCEXS), Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|