1
|
Liu M, Yin F, Zhao W, Tian P, Zhou Y, Jia Z, Huang K, Ding Y, Xiao J, Niu W, Wang X. Diversity of Culturable Bacteria from the Coral Reef Areas in the South China Sea and Their Agar-Degrading Abilities. Microorganisms 2024; 12:187. [PMID: 38258013 PMCID: PMC10818321 DOI: 10.3390/microorganisms12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The South China Sea (SCS) is abundant in marine microbial resources with high primary productivity, which is crucial for sustaining the coral reef ecosystem and the carbon cycle. Currently, research on the diversity of culturable bacteria in the SCS is relatively extensive, yet the culturable bacteria in coral reefs has been poorly understood. In this study, we analyzed the bacterial community structure of seawater samples among Daya Bay (Fujian Province), Qionghai (Hainan Province), Xisha Islands, and the southern South China Sea based on culturable methods and detected their abilities for agar degradation. There were 441 bacterial strains, belonging to three phyla, five classes, 43 genera, and 101 species, which were isolated by marine agar 2216E (MA; Becton Dickinson). Strains within Gammaproteobacteria were the dominant group, accounting for 89.6% of the total bacterial isolates. To investigate vibrios, which usually correlated with coral health, 348 isolates were obtained from TCBS agar, and all isolates were identified into three phylum, three classes, 14 orders, 25 families, and 48 genera. Strains belonging to the genus Vibrio had the greatest number (294 strains), indicating the high selectivity of TCBS agar for vibrios. Furthermore, nineteen strains were identified as potentially novel species according to the low 16S rRNA gene similarity (<98.65%), and 28 strains (15 species) had agar-degrading ability. These results indicate a high diversity of culturable bacteria in the SCS and a huge possibility to find novel and agar-degrading species. Our study provides valuable microbial resources to maintain the stability of coral ecosystems and investigate their roles in the marine carbon cycle.
Collapse
Affiliation(s)
- Mei Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Fu Yin
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Wenbin Zhao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Yi Zhou
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Zhiyu Jia
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Keyi Huang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunqi Ding
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Jiaguang Xiao
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Xiaolei Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
2
|
Becerril-Espinosa A, Mateos-Salmón C, Burgos A, Rodríguez-Zaragoza FA, Meza-Canales ID, Juarez-Carrillo E, Rios-Jara E, Ocampo-Alvarez H. Dry Stamping Coral Powder: An Effective Method for Isolating Coral Symbiotic Actinobacteria. Microorganisms 2023; 11:2951. [PMID: 38138095 PMCID: PMC10745815 DOI: 10.3390/microorganisms11122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Actinobacteria are important sources of antibiotics and have been found repeatedly in coral core microbiomes, suggesting this bacterial group plays important functional roles tied to coral survival. However, to unravel coral-actinobacteria ecological interactions and discover new antibiotics, the complex challenges that arise when isolating symbiotic actinobacteria must be overcome. Moreover, by isolating unknown actinobacteria from corals, novel biotechnological applications may be discovered. In this study, we compared actinobacteria recovery from coral samples between two widely known methods for isolating actinobacteria: dry stamping and heat shock. We found that dry stamping was at least three times better than heat shock. The assembly of isolated strains by dry stamping was unique for each species and consistent across same-species samples, highlighting that dry stamping can be reliably used to characterize coral actinobacteria communities. By analyzing the genomes of the closest related type strains, we were able to identify several functions commonly found among symbiotic organisms, such as transport and quorum sensing. This study provides a detailed methodology for isolating coral actinobacteria for ecological and biotechnological purposes.
Collapse
Affiliation(s)
- Amayaly Becerril-Espinosa
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico; (A.B.-E.); (A.B.)
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Carolina Mateos-Salmón
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Asdrubal Burgos
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico; (A.B.-E.); (A.B.)
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico;
| | - Fabián A. Rodríguez-Zaragoza
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Iván D. Meza-Canales
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico;
| | - Eduardo Juarez-Carrillo
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Eduardo Rios-Jara
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Héctor Ocampo-Alvarez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| |
Collapse
|
3
|
Li J, Zou Y, Li Q, Zhang J, Bourne DG, Lyu Y, Liu C, Zhang S. A coral-associated actinobacterium mitigates coral bleaching under heat stress. ENVIRONMENTAL MICROBIOME 2023; 18:83. [PMID: 37996910 PMCID: PMC10668361 DOI: 10.1186/s40793-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The positive effects of exposing corals to microorganisms have been reported though how the benefits are conferred are poorly understood. Here, we isolated an actinobacterial strain (SCSIO 13291) from Pocillopora damicornis with capabilities to synthesize antioxidants, vitamins, and antibacterial and antiviral compounds supported with phenotypic and/or genomic evidence. Strain SCSIO 13291 was labeled with 5 (and - 6)-carboxytetramethylrhodamine, succinimidyl ester and the labeled cell suspension directly inoculated onto the coral polyp tissues when nubbins were under thermal stress in a mesocosm experiment. We then visualized the labelled bacterial cells and analyzed the coral physiological, transcriptome and microbiome to elucidate the effect this strain conferred on the coral holobiont under thermal stress. RESULTS Subsequent microscopic observations confirmed the presence of the bacterium attached to the coral polyps. Addition of the SCSIO 13291 strain reduced signs of bleaching in the corals subjected to heat stress. At the same time, alterations in gene expression, which were involved in reactive oxygen species and light damage mitigation, attenuated apoptosis and exocytosis in addition to metabolite utilization, were observed in the coral host and Symbiodiniaceae populations. In addition, the coral associated bacterial community altered with a more stable ecological network for samples inoculated with the bacterial strain. CONCLUSIONS Our results provide insights into the benefits of a putative actinobacterial probiotic strain that mitigate coral bleaching signs. This study suggests that the inoculation of bacteria can potentially directly benefit the coral holobiont through conferring metabolic activities or through indirect mechanisms of suppling additional nutrient sources.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China.
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
4
|
Messaoudi O, Benamar I, Azizi A, Albukhaty S, Khane Y, Sulaiman GM, Salem-Bekhit MM, Hamdi K, Ghoummid S, Zoukel A, Messahli I, Kerchich Y, Benaceur F, Salem MM, Bendahou M. Characterization of Silver Carbonate Nanoparticles Biosynthesized Using Marine Actinobacteria and Exploring of Their Antimicrobial and Antibiofilm Activity. Mar Drugs 2023; 21:536. [PMID: 37888471 PMCID: PMC10608482 DOI: 10.3390/md21100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.
Collapse
Affiliation(s)
- Omar Messaoudi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ibrahim Benamar
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ahmed Azizi
- Department of The Common Trunk Sciences and Technology, Faculty of Technology, University of Amar Telidji, Highway Ghardaia, P.O. Box G37 (M’kam), Laghouat 03000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Yasmina Khane
- Faculty of Science and Technology, University of Ghardaia, BP455, Ghardaia 47000, Algeria;
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq;
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Kaouthar Hamdi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Sirine Ghoummid
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Abdelhalim Zoukel
- Laboratory Physico-Chemistry of Materials, Laghouat University, Laghouat 03000, Algeria;
- Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat 03000, Algeria
| | - Ilhem Messahli
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Yacine Kerchich
- École Nationale Polytechnique (ENP), Laboratory of Environmental Science and Technology, El Harrach 16200, Algeria;
| | - Farouk Benaceur
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Research Unit of Medicinal Plant (RUMP) Attached to Center of Biotechnology (CRBt, 3000, Constantine), Laghouat 03000, Algeria
| | - Mohamed M. Salem
- College of Medicine, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Mourad Bendahou
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| |
Collapse
|
5
|
Mendoza-Porras O, Nguyen TV, Shah RM, Thomas-Hall P, Bastin L, Deaker DJ, Motti CA, Byrne M, Beale DJ. Biochemical metabolomic profiling of the Crown-of-Thorns Starfish (Acanthaster): New insight into its biology for improved pest management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160525. [PMID: 36574554 DOI: 10.1016/j.scitotenv.2022.160525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The Crown-of-Thorns Starfish (COTS), Acanthaster species, is a voracious coral predator that destroys coral reefs when in outbreak status. The baseline metabolite and lipid biomolecules of 10 COTS tissues, including eggs from gravid females, were investigated in this study to provide insight into their biology and identify avenues for control. Targeted and untargeted metabolite- and lipidomics-based mass spectrometry approaches were used to obtain tissue-specific metabolite and lipid profiles. Across all COTS tissues, 410 metabolites and 367 lipids were identified. Most abundant were amino acids and peptides (18.7%) and wax esters (17%). There were 262 metabolites and 192 lipids identified in COTS eggs. Wax esters were more abundant in the eggs (30%) followed by triacylglycerols (TG), amino acids, and peptides. The diversity of asterosaponins in eggs (34) was higher than in tissues (2). Several asterosaponins known to modulate sperm acrosome reaction were putatively identified, including glycoside B, asterosaponin-4 (Co-Aris III), and regularoside B (asterosaponin A). The saponins saponin A, thornasteroside A, hillaside B, and non-saponins dictyol J and axinellamine B which have been shown to possess defensive properties, were found in abundance in gonads, skin, and radial nerve tissues. Inosine and 2-hexyldecanoic acid are the most abundant metabolites in tissues and eggs. As a secondary metabolite of purine degradation, inosine plays an important role in purine biosynthesis, while 2-hexyldecanoic acid is known to suppress side-chain crystallization during the synthesis of amphiphilic macromolecules (i.e., phospholipids). These significant spatial changes in metabolite, lipid, and asterosaponin profiles enabled unique insights into key biological tissue-specific processes that could be manipulated to better control COTS populations. Our findings highlight COTS as a novel source of molecules with therapeutic and cosmetic properties (ceramides, sphingolipids, carnosine, and inosine). These outcomes will be highly relevant for the development of strategies for COTS management including chemotaxis-based biocontrol and exploitation of COTS carcasses for the extraction of commercial molecules.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Thao V Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Peter Thomas-Hall
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Lee Bastin
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Dione J Deaker
- Marine Studies Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Maria Byrne
- Marine Studies Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
6
|
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020; 8:microorganisms8091380. [PMID: 32916931 PMCID: PMC7563442 DOI: 10.3390/microorganisms8091380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-500-000 (ext. 22461)
| |
Collapse
|
7
|
He YQ, Chen RW, Li C, Shi SB, Cui LQ, Long LJ, Tian XP. Actinomarinicola tropica gen. nov. sp. nov., a new marine actinobacterium of the family Iamiaceae, isolated from South China Sea sediment environments. Int J Syst Evol Microbiol 2020; 70:3852-3858. [PMID: 32501198 DOI: 10.1099/ijsem.0.004251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel marine actinobacterium, strain SCSIO 58843T, was isolated from the sediment sample collected from the South China Sea. Strain SCSIO 58843T was Gram-stain-positive, aerobic and rod shaped. The whole-cell hydrolysis of amino acids contained dd-DAP, alanine, glutamic acid, glycine and aspartic acid. The main menaquinone was MK-9(H8). The major fatty acids were C17 : 1 ω8c and C17 : 0. The major phospholipids were diphosphatidylglycerol (DPG), phosphatidylinositol (PI), phospatidylcholine (PC) and phosphatidylinositolmannoside (PIM). The G+C content of the genomic DNA was 72.5 %. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain SCSIO 58843T formed a new lineage in the family Iamiaceae and had the highest similarity of 93.8 % with Iamia majanohamensis DSM 19957T. Strain SCSIO 58843T can be distinguished from these known genera in the family Iamiaceae by polyphasic data analyses, and represents a novel genus and novel species, for which Actinomarinicola tropica gen. nov., sp. nov is proposed with the type strain SCSIO 58843T(=KCTC 49408T=CGMCC 1.17503T).
Collapse
Affiliation(s)
- Yuan-Qiu He
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Rou-Wen Chen
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Cun Li
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Song-Biao Shi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Lin-Qing Cui
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Li-Juan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| |
Collapse
|
8
|
Hurtado-McCormick V, Kahlke T, Petrou K, Jeffries T, Ralph PJ, Seymour JR. Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Front Microbiol 2019; 10:1011. [PMID: 31139163 PMCID: PMC6527750 DOI: 10.3389/fmicb.2019.01011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022] Open
Abstract
Seagrasses are globally distributed marine plants that represent an extremely valuable component of coastal ecosystems. Like terrestrial plants, seagrass productivity and health are likely to be strongly governed by the structure and function of the seagrass microbiome, which will be distributed across a number of discrete microenvironments within the plant, including the phyllosphere, the endosphere and the rhizosphere, all different in physical and chemical conditions. Here we examined patterns in the composition of the microbiome of the seagrass Zostera muelleri, within six plant-associated microenvironments sampled across four different coastal locations in New South Wales, Australia. Amplicon sequencing approaches were used to characterize the diversity and composition of bacterial, microalgal, and fungal microbiomes and ultimately identify "core microbiome" members that were conserved across sampling microenvironments. Discrete populations of bacteria, microalgae and fungi were observed within specific seagrass microenvironments, including the leaves and roots and rhizomes, with "core" taxa found to persist within these microenvironments across geographically disparate sampling sites. Bacterial, microalgal and fungal community profiles were most strongly governed by intrinsic features of the different seagrass microenvironments, whereby microscale differences in community composition were greater than the differences observed between sampling regions. However, our results showed differing strengths of microbial preferences at the plant scale, since this microenvironmental variability was more pronounced for bacteria than it was for microalgae and fungi, suggesting more specific interactions between the bacterial consortia and the seagrass host, and potentially implying a highly specialized coupling between seagrass and bacterial metabolism and ecology. Due to their persistence within a given seagrass microenvironment, across geographically discrete sampling locations, we propose that the identified "core" microbiome members likely play key roles in seagrass physiology as well as the ecology and biogeochemistry of seagrass habitats.
Collapse
Affiliation(s)
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Katherina Petrou
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Thomas Jeffries
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin Robert Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
9
|
Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu, China. Syst Appl Microbiol 2018; 41:516-527. [PMID: 29934111 DOI: 10.1016/j.syapm.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022]
Abstract
Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%-43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.
Collapse
|
10
|
Chopyk J, Allard S, Nasko DJ, Bui A, Mongodin EF, Sapkota AR. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations. Front Microbiol 2018; 9:792. [PMID: 29740420 PMCID: PMC5928236 DOI: 10.3389/fmicb.2018.00792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October-December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Daniel J. Nasko
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, United States
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Emmanuel F. Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Amy R. Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| |
Collapse
|
11
|
Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 2017; 5:e3247. [PMID: 28480140 PMCID: PMC5417069 DOI: 10.7717/peerj.3247] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.
Collapse
Affiliation(s)
- Hector Fernando Arocha-Garza
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ricardo Canales-Del Castillo
- Facultad de Ciencias Biológicas, Laboratorio de Biología de la Conservación, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
12
|
Gajigan AP, Diaz LA, Conaco C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiologyopen 2017; 6. [PMID: 28425179 PMCID: PMC5552946 DOI: 10.1002/mbo3.478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont.
Collapse
Affiliation(s)
- Andrian P Gajigan
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Leomir A Diaz
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
13
|
Sibanda T, Selvarajan R, Tekere M. Synthetic extreme environments: overlooked sources of potential biotechnologically relevant microorganisms. Microb Biotechnol 2017; 10:570-585. [PMID: 28224723 PMCID: PMC5404200 DOI: 10.1111/1751-7915.12602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Synthetic extreme environments like carwash effluent tanks and drains are potential sources of biotechnologically important microorganisms and molecules which have, however, remained unexplored. Using culture‐ and molecular‐based methods, a total of 17 bacterial isolates belonging to the genera Shewanella, Proteus, Paenibacillus, Enterobacter and Citrobacter, Aeromonas, Pseudomonas and Pantoea were identified. Hydrocarbon utilization and enzyme production screening assays showed that Aeromonas sp. CAC11, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 and Citrobacter sp. PCW7 were able to degrade benzanthracene, naphthalene and diesel oil, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 could produce cellulase enzyme, while Proteus sp. BPS2, Pseudomonas sp. SAS8 and Proteus sp. CAL3 could produce lipase. GC‐MS analysis of bacterial secondary metabolites resulted in identification of 107 different compounds produced by Proteus sp. BPS2, Paenibacillus sp. CAC12, Pseudomonas sp. SAS8, Proteus sp. CAL3 and Paenibacillus sp. CAC13. Most of the compounds identified by both GC‐MS and LC‐MS have previously been determined to have antibacterial, antifungal and/or anticancer properties. Further, microbial metabolites which have previously been known to be produced only by plants or microorganisms found in natural extreme environments were also identified in this study. This research has revealed the immense bioresource potential of microorganisms inhabiting synthetic extreme environments.
Collapse
Affiliation(s)
- Timothy Sibanda
- Department of Environmental Sciences, College of Agriculture and Environmental Science, UNISA Florida Campus, PO Box X6, Florida, 1709, South Africa
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agriculture and Environmental Science, UNISA Florida Campus, PO Box X6, Florida, 1709, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Science, UNISA Florida Campus, PO Box X6, Florida, 1709, South Africa
| |
Collapse
|
14
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
15
|
Paulino GVB, Broetto L, Pylro VS, Landell MF. Compositional shifts in bacterial communities associated with the coral Palythoa caribaeorum due to anthropogenic effects. MARINE POLLUTION BULLETIN 2017; 114:1024-1030. [PMID: 27889074 DOI: 10.1016/j.marpolbul.2016.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 11/18/2016] [Indexed: 05/06/2023]
Abstract
Corals harbor abundant and diverse prokaryotic communities that may be strongly influenced by human activities, which in turn compromise the normal functioning of coral species and predispose them to opportunistic infections. In this study, we investigated the effect of sewage dumping on the bacterial communities associated with the soft coral Palythoa caribaeorum at two sites in the Brazilian coast. We observed a dominance of bacterial species classified as human pathogens at sites exposed to untreated sewage discharge. The microbial diversity of undisturbed sites was more homogeneous and diverse and showed greater abundance. In addition, bacterial communities differed substantially between the exposed and undisturbed areas. The microbial community associated with the samples collected from the exposed sites revealed the anthropogenic effect caused by organic matter from untreated sewage dumping, with an abundance of pathogenic bacterial species.
Collapse
Affiliation(s)
- Gustavo Vasconcelos Bastos Paulino
- Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP 57072-900 Maceió, AL, Brazil
| | - Leonardo Broetto
- Universidade Federal de Alagoas, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, CEP 57309-005 Arapiraca, AL, Brazil
| | - Victor Satler Pylro
- René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP 57072-900 Maceió, AL, Brazil.
| |
Collapse
|
16
|
Behie SW, Bonet B, Zacharia VM, McClung DJ, Traxler MF. Molecules to Ecosystems: Actinomycete Natural Products In situ. Front Microbiol 2017; 7:2149. [PMID: 28144233 PMCID: PMC5239776 DOI: 10.3389/fmicb.2016.02149] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
Actinomycetes, filamentous actinobacteria found in numerous ecosystems around the globe, produce a wide range of clinically useful natural products (NP). In natural environments, actinomycetes live in dynamic communities where environmental cues and ecological interactions likely influence NP biosynthesis. Our current understating of these cues, and the ecological roles of NP, is in its infancy. We postulate that understanding the ecological context in which actinomycete metabolites are made is fundamental to advancing the discovery of novel NP. In this review we explore the ecological relevance of actinomycetes and their secondary metabolites from varying ecosystems, and suggest that investigating the ecology of actinomycete interactions warrants particular attention with respect to metabolite discovery. Furthermore, we focus on the chemical ecology and in situ analysis of actinomycete NP and consider the implications for NP biosynthesis at ecosystem scales.
Collapse
Affiliation(s)
- Scott W Behie
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, USA
| | - Bailey Bonet
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, USA
| | - Vineetha M Zacharia
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, USA
| | - Dylan J McClung
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, USA
| |
Collapse
|
17
|
Undabarrena A, Beltrametti F, Claverías FP, González M, Moore ERB, Seeger M, Cámara B. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile. Front Microbiol 2016; 7:1135. [PMID: 27486455 PMCID: PMC4949237 DOI: 10.3389/fmicb.2016.01135] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | | | - Fernanda P. Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Myriam González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Edward R. B. Moore
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| |
Collapse
|
18
|
Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, Domysheva VM, Blinov VV, Likhoshway YV. Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol 2016; 92:fiw094. [PMID: 27162182 DOI: 10.1093/femsec/fiw094] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
The composition of bacterial communities in Lake Baikal in different hydrological periods and at different depths (down to 1515 m) has been analyzed using pyrosequencing of the 16S rRNA gene V3 variable region. Most of the resulting 34 562 reads of the Bacteria domain have clustered into 1693 operational taxonomic units (OTUs) classified with the phyla Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Firmicutes, Acidobacteria and Cyanobacteria. It has been found that their composition at the family level and relative contributions to bacterial communities distributed over the water column vary depending on hydrological period. The number of OTUs and the parameters of taxonomic richness (ACE, Chao1 indices) and diversity (Shannon and inverse Simpson index) reach the highest values in water layers. The composition of bacterial communities in these layers remains relatively constant, whereas that in surface layers differs between hydrological seasons. The dynamics of physicochemical conditions over the water column and their relative constancy in deep layers are decisive factors in shaping the pattern of bacterial communities in Lake Baikal.
Collapse
Affiliation(s)
- Maria I Kurilkina
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yulia R Zakharova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yuri P Galachyants
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Darya P Petrova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yuri S Bukin
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Valentina M Domysheva
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Vadim V Blinov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
19
|
Tang H, Shi X, Wang X, Hao H, Zhang XM, Zhang LP. Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone. Front Microbiol 2016; 7:343. [PMID: 27047461 PMCID: PMC4801888 DOI: 10.3389/fmicb.2016.00343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1–YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120°C for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05) from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001) in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line.
Collapse
Affiliation(s)
- Hui Tang
- College of Life Sciences, Hebei UniversityBaoding, China; The Key Lab of Microbial Diversity Research and Application of Hebei ProvinceBaoding, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei UniversityBaoding, China
| | - Xunxun Shi
- College of Life Sciences, Hebei UniversityBaoding, China; The Key Lab of Microbial Diversity Research and Application of Hebei ProvinceBaoding, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei UniversityBaoding, China
| | - Xiaofei Wang
- College of Life Sciences, Hebei UniversityBaoding, China; The Key Lab of Microbial Diversity Research and Application of Hebei ProvinceBaoding, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei UniversityBaoding, China
| | - Huanhuan Hao
- College of Life Sciences, Hebei UniversityBaoding, China; The Key Lab of Microbial Diversity Research and Application of Hebei ProvinceBaoding, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei UniversityBaoding, China
| | - Xiu-Min Zhang
- College of Life Sciences, Hebei UniversityBaoding, China; The Key Lab of Microbial Diversity Research and Application of Hebei ProvinceBaoding, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei UniversityBaoding, China
| | - Li-Ping Zhang
- College of Life Sciences, Hebei UniversityBaoding, China; The Key Lab of Microbial Diversity Research and Application of Hebei ProvinceBaoding, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei UniversityBaoding, China
| |
Collapse
|