1
|
Reid CJ, Farrell M, Kirby JK. Microbial communities in biosolids-amended soils: A critical review of high-throughput sequencing approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124203. [PMID: 39854900 DOI: 10.1016/j.jenvman.2025.124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Sustainable reuse of treated wastewater sludge or biosolids in agricultural production requires comprehensive understanding of their risks and benefits. Microbes are central mediators of many biosolids-associated risks and benefits, however understanding of their responses to biosolids remains minimal. Application of biosolids to soils amounts to a coalescence of two distinct microbial communities adapted to vastly different matrices. High-throughput DNA and RNA sequencing (HTS) approaches are required to accurately describe the compositional and functional outcomes of this process as they currently provide the highest possible resolution to deal with complex community-scale phenomena. Furthermore, linkage of HTS data to physicochemical and functional data can reveal biotic and abiotic drivers of coalescence, impacts of biosolids-borne contaminants and the collective downstream implications for soil and plant health. Here we review the current body of literature examining microbial communities in biosolids-amended soils using HTS of total community DNA and RNA. We provide a critical synthesis of soil microbial community composition and functional responses, the physical, chemical and biological drivers of these responses, and the influence of three major biosolids-borne anthropogenic contaminants of concern; antimicrobials and antimicrobial resistance genes, plastics, and per- and polyfluoroalkyl substances (PFAS). Finally, we identify methodological limitations and outstanding research questions precluding a holistic understanding of microbial responses in biosolids-amended soils and envision future research whereby sequence-based microbial ecology is integrated with soil, plant, and contaminant data to preserve soil health, support plant productivity, and remediate contaminants.
Collapse
Affiliation(s)
- Cameron J Reid
- Commonwealth Scientific and Industrial Research Organisation, Environment Research Unit, Urrbrae, South Australia, Australia.
| | - Mark Farrell
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food Research Unit, Urrbrae, South Australia, Australia
| | - Jason K Kirby
- Commonwealth Scientific and Industrial Research Organisation, Environment Research Unit, Urrbrae, South Australia, Australia
| |
Collapse
|
2
|
Detection of Acquired Antibiotic Resistance Genes in Domestic Pig (Sus scrofa) and Common Carp (Cyprinus carpio) Intestinal Samples by Metagenomics Analyses in Hungary. Antibiotics (Basel) 2022; 11:antibiotics11101441. [PMID: 36290099 PMCID: PMC9598914 DOI: 10.3390/antibiotics11101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and from a common carp (Cyprinus carpio). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform. The ResFinder database was applied for detecting acquired ARGs in the assembled metagenomic contigs. Altogether, 59 acquired ARG types were identified, 51 genes from domestic pig and 12 genes from the carp intestinal microbiome. ARG types belonged to the antibiotic classes aminoglycosides (27.1%), tetracyclines (25.4%), β-lactams (16.9%), and others. Of the identified ARGs, tet(E), a blaOXA-48-like β-lactamase gene, as well as cphA4, ampS, aadA2, qnrS2, and sul1, were identified only in carp but not in swine samples. Several of the detected acquired ARGs have not yet been described from food animals in Hungary. The tet(Q), tet(W), tet(O), and mef(A) genes detected in the intestinal microbiome of domestic pigs had also been identified from free-living wild boars in Hungary, suggesting a possible relationship between the occurrence of acquired ARGs in domestic and wild animal populations.
Collapse
|
3
|
Mustafa SS, Batool R, Kamran M, Javed H, Jamil N. Evaluating the Role of Wastewaters as Reservoirs of Antibiotic-Resistant ESKAPEE Bacteria Using Phenotypic and Molecular Methods. Infect Drug Resist 2022; 15:5715-5728. [PMID: 36199818 PMCID: PMC9527703 DOI: 10.2147/idr.s368886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methodology Results Conclusion
Collapse
Affiliation(s)
- Syeda Samar Mustafa
- Institute of Microbiology and Molecular Genetics, Quaid e Azam Campus, University of the Punjab 54590, Lahore, Pakistan
- Correspondence: Syeda Samar Mustafa, Email
| | - Rida Batool
- Institute of Microbiology and Molecular Genetics, Quaid e Azam Campus, University of the Punjab 54590, Lahore, Pakistan
| | - Muhammad Kamran
- Queensland Alliance for Agriculture and Food Innovation Centre for Animal Science, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Hasnain Javed
- Provincial Public Health Reference Lab, Punjab AIDS Control Program, Lahore, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, Quaid e Azam Campus, University of the Punjab 54590, Lahore, Pakistan
| |
Collapse
|
4
|
Beyond the ABCs—Discovery of Three New Plasmid Types in Rhodobacterales (RepQ, RepY, RepW). Microorganisms 2022; 10:microorganisms10040738. [PMID: 35456790 PMCID: PMC9025767 DOI: 10.3390/microorganisms10040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Copiotrophic marine bacteria of the Roseobacter group (Rhodobacterales, Alphaproteobacteria) are characterized by a multipartite genome organization. We sequenced the genomes of Sulfitobacter indolifex DSM 14862T and four related plasmid-rich isolates in order to investigate the composition, distribution, and evolution of their extrachromosomal replicons (ECRs). A combination of long-read PacBio and short-read Illumina sequencing was required to establish complete closed genomes that comprised up to twelve ECRs. The ECRs were differentiated in stably evolving chromids and genuine plasmids. Among the chromids, a diagnostic RepABC-8 replicon was detected in four Sulfitobacter species that likely reflects an evolutionary innovation that originated in their common ancestor. Classification of the ECRs showed that the most abundant plasmid system is RepABC, followed by RepA, DnaA-like, and RepB. However, the strains also contained three novel plasmid types that were designated RepQ, RepY, and RepW. We confirmed the functionality of their replicases, investigated the genetic inventory of the mostly cryptic plasmids, and retraced their evolutionary origin. Remarkably, the RepY plasmid of S. pontiacus DSM 110277 is the first high copy-number plasmid discovered in Rhodobacterales.
Collapse
|
5
|
Frequency and diversity of small plasmids in mesophilic Aeromonas isolates from fish, water and sediment. Plasmid 2021; 118:102607. [PMID: 34800545 DOI: 10.1016/j.plasmid.2021.102607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Plasmids are autonomous genetic elements ubiquitously present in bacteria. In addition to containing genetic determinants responsible for their replication and stability, some plasmids may carry genes that help bacteria adapt to different environments, while others without a known function are classified as cryptic. In this work we identified and characterized plasmids from a collection of mesophilic Aeromonas spp. (N = 90) isolated from water, sediments and fish. A total of 15 small plasmids ranging from 2287 to 10,558 bp, with an incidence of 16.7% (15/90) was found. Plasmids were detected in A. hydrophila (6), A. veronii (4), A. taiwanensis (2), A. jandaei (1), A. media (1) and Aeromonas sp. (1). There were no large or megaplasmids in the strains studied in this work. Analysis of coding sequences identified proteins associated to replication, mobilization, antibiotic resistance, virulence and stability. A considerable number of hypothetical proteins with unknown functions were also found. Some strains shared identical plasmid profiles, however, only two of them were clones. Small plasmids could be acting as a gene repositories as suggested by the presence of a gene encoding for a putative zonula occludens toxin (Zot) that causes diarrhea and the qnrB gene involved in quinolone resistance harbored in plasmids pAerXII and pAerXIII respectively.
Collapse
|
6
|
Ajayi AO, Perry B, Yost CK, Jamieson R, Truelstrup Hansen L, Rahube T. Comparative Genomic Analyses of the β-lactamase (blaCMY-42) Encoding Plasmids Isolated from Wastewater Treatment Plants in Canada. Can J Microbiol 2021; 67:737-748. [PMID: 34077692 DOI: 10.1139/cjm-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wastewater treatment plants are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes. Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening of antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209,357 bp), harbouring resistance genes to beta-lactam (blaCMY-42, blaTEM-1β, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172,280 bp), carrying similar beta-lactamase and a small multidrug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24,552 bp cluster in pFEMG - intersperced with transposons, insertion sequence elements, and a class 1 integron - maybe of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponds to the observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade offs of plasmids having differing types of conjugative transfer and maintenance modules.
Collapse
Affiliation(s)
| | - Ben Perry
- University of Regina, 6846, Regina, Saskatchewan, Canada;
| | | | - Rob Jamieson
- Dalhousie University, 3688, Halifax, Nova Scotia, Canada;
| | - Lisbeth Truelstrup Hansen
- Dalhousie University, 3688, Department of Process Engineering and Applied Science, Halifax, Canada.,Technical University of Denmark, 5205, Department of Process Engineering and Applied Science, Lyngby, Denmark;
| | - Teddie Rahube
- University of Regina, 6846, Biology Department, Regina, Canada, S4S 0A2.,Botswana International University of Science and Technology, 357305, Biology Department, Palapye, Botswana;
| |
Collapse
|
7
|
Gancz A, Kondratyeva K, Cohen-Eli D, Navon-Venezia S. Genomics and Virulence of Klebsiella pneumoniae Kpnu95 ST1412 Harboring a Novel Incf Plasmid Encoding Blactx-M-15 and Qnrs1 Causing Community Urinary Tract Infection. Microorganisms 2021; 9:microorganisms9051022. [PMID: 34068663 PMCID: PMC8151138 DOI: 10.3390/microorganisms9051022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase (ESBL)-producing multidrug resistant Klebsiella pneumoniae causing community urinary tract infections (CA-UTI) in healthy women undermines effective treatment and poses a public health concern. We performed a comprehensive genomic analysis (Illumina and MinION) and virulence studies using Caenorhabditis elegans nematodes to evaluate KpnU95, a blaCTX-M-15-producing CA-UTI K. pneumoniae strain. Whole genome sequencing identified KpnU95 as sequence type 1412 and revealed the chromosomal and plasmid-encoding resistome, virulome and persistence features. KpnU95 possess a wide virulome and caused complete C. elegans killing. The strain harbored a single novel 180.3Kb IncFIB(K) plasmid (pKpnU95), which encodes ten antibiotic resistance genes, including blaCTX-M-15 and qnrS1 alongside a wide persistome encoding heavy metal and UV resistance. Plasmid curing and reconstitution were used for loss and gain studies to evaluate its role on bacterial resistance, fitness and virulence. Plasmid curing abolished the ESBL phenotype, decreased ciprofloxacin MIC and improved bacterial fitness in artificial urine accompanied with enhanced copper tolerance, without affecting bacterial virulence. Meta-analysis supported the uniqueness of pKpnU95 and revealed plasmid-ST1412 lineage adaptation. Overall, our findings provide translational data on a CA-UTI K. pneumoniae ST1412 strain and demonstrates that ESBL-encoding plasmids play key roles in multidrug resistance and in bacterial fitness and persistence.
Collapse
Affiliation(s)
- Ayala Gancz
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Kira Kondratyeva
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Dorit Cohen-Eli
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Shiri Navon-Venezia
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
- The Miriam and Sheldon Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Correspondence:
| |
Collapse
|
8
|
Law A, Solano O, Brown CJ, Hunter SS, Fagnan M, Top EM, Stalder T. Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Front Microbiol 2021; 12:606409. [PMID: 33967971 PMCID: PMC8098119 DOI: 10.3389/fmicb.2021.606409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes.
Collapse
Affiliation(s)
- Aaron Law
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Olubunmi Solano
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Samuel S. Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
- UC-Davis Genome Center, Davis, CA, United States
| | - Matt Fagnan
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
9
|
Gibbon MJ, Couto N, David S, Barden R, Standerwick R, Jagadeesan K, Birkwood H, Dulyayangkul P, Avison MB, Kannan A, Kibbey D, Craft T, Habib S, Thorpe HA, Corander J, Kasprzyk-Hordern B, Feil EJ. A high prevalence of blaOXA-48 in Klebsiella ( Raoultella) ornithinolytica and related species in hospital wastewater in South West England. Microb Genom 2021; 7:mgen000509. [PMID: 33416467 PMCID: PMC8190614 DOI: 10.1099/mgen.0.000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022] Open
Abstract
Klebsiella species occupy a wide range of environmental and animal niches, and occasionally cause opportunistic infections that are resistant to multiple antibiotics. In particular, Klebsiella pneumoniae (Kpne) has gained notoriety as a major nosocomial pathogen, due principally to the rise in non-susceptibility to carbapenems and other beta-lactam antibiotics. Whilst it has been proposed that the urban water cycle facilitates transmission of pathogens between clinical settings and the environment, the level of risk posed by resistant Klebsiella strains in hospital wastewater remains unclear. We used whole genome sequencing (WGS) to compare Klebsiella species in contemporaneous samples of wastewater from an English hospital and influent to the associated wastewater treatment plant (WWTP). As we aimed to characterize representative samples of Klebsiella communities, we did not actively select for antibiotic resistance (other than for ampicillin), nor for specific Klebsiella species. Two species, Kpne and K. (Raoultella) ornithinolytica (Korn), were of equal dominance in the hospital wastewater, and four other Klebsiella species were present in low abundance in this sample. In contrast, despite being the species most closely associated with healthcare settings, Kpne was the dominant species within the WWTP influent. In total, 29 % of all isolates harboured the blaOXA-48 gene on a pOXA-48-like plasmid, and these isolates were almost exclusively recovered from the hospital wastewater. This gene was far more common in Korn (68 % of isolates) than in Kpne (3.4 % of isolates). In general plasmid-borne, but not chromosomal, resistance genes were significantly enriched in the hospital wastewater sample. These data implicate hospital wastewater as an important reservoir for antibiotic-resistant Klebsiella, and point to an unsuspected role of species within the Raoultella group in the maintenance and dissemination of plasmid-borne blaOXA-48. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Marjorie J. Gibbon
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Natacha Couto
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sophia David
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | - Hollie Birkwood
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Punyawee Dulyayangkul
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Matthew B. Avison
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Andrew Kannan
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Dan Kibbey
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Tim Craft
- Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath BA1 3NG, UK
| | - Samia Habib
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Harry A. Thorpe
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
| | - Jukka Corander
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | - Edward J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
10
|
Grehs BWN, Linton MAO, Clasen B, de Oliveira Silveira A, Carissimi E. Antibiotic resistance in wastewater treatment plants: understanding the problem and future perspectives. Arch Microbiol 2020; 203:1009-1020. [PMID: 33112995 DOI: 10.1007/s00203-020-02093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
Antibiotics residues (AR), antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) are a new class of water contaminants, due to their adverse effects on aquatic ecosystems and human health. Contamination of water bodies occurs mainly by the excretion of antibiotics incompletely metabolized by humans and animals and is considered the main source of contamination of antibiotics in the environment. Given the imminent threat, the World Health Organization (WHO) has categorized the spread of antibiotics as one of the top three threats to public health in the twenty-first century. The Urban Wastewater Treatment Plants (UWWTP) bring together AR, ARB, ARG, making the understanding of this peculiar environment fundamental for the investigation of technologies aimed at combating the spread of bacterial resistance. Several methodologies have been employed focusing on reducing the ARB and ARG loads of the effluents, however the reactivation of these microorganisms after the treatment is widely reported. This work aims to elucidate the role of UWWTPs in the spread of bacterial resistance, as well as to report the efforts that have been made so far and future perspectives to combat this important global problem.
Collapse
Affiliation(s)
- Bárbara W N Grehs
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Maria A O Linton
- Department of Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CE, Santa Maria, RS, 97105-900, Brazil
| | - Barbara Clasen
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil.
- Department of Environmental Science, State University of Rio Grande Do Sul (UERGS), R. Cipriano Barata, 211, Três Passos, RS, 98600-000, Brazil.
| | - Andressa de Oliveira Silveira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Elvis Carissimi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
11
|
Piotrowska M, Dziewit L, Ostrowski R, Chmielowska C, Popowska M. Molecular Characterization and Comparative Genomics of IncQ-3 Plasmids Conferring Resistance to Various Antibiotics Isolated from a Wastewater Treatment Plant in Warsaw (Poland). Antibiotics (Basel) 2020; 9:antibiotics9090613. [PMID: 32957637 PMCID: PMC7557826 DOI: 10.3390/antibiotics9090613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously proposed classification system divides the plasmid group into four subgroups, i.e., IncQ-1, IncQ-2, IncQ-3, and IncQ-4. The last two subgroups have been poorly described so far. The aim of this study was to analyze five newly identified IncQ-3 plasmids isolated from a wastewater treatment plant in Poland and to compare them with all known plasmids belonging to the IncQ-3 subgroup whose sequences were retrieved from the NCBI database. The complete nucleotide sequences of the novel plasmids were annotated and bioinformatic analyses were performed, including identification of core genes and auxiliary genetic load. Furthermore, functional experiments testing plasmid mobility were carried out. Phylogenetic analysis based on three core genes (repA, mobA/repB, and mobC) revealed the presence of three main clusters of IncQ-3 replicons. Apart from having a highly conserved core, the analyzed IncQ-3 plasmids were vectors of antibiotic resistance genes, including (I) the qnrS2 gene that encodes fluoroquinolone resistance and (II) β-lactam, trimethoprim, and aminoglycoside resistance genes within integron cassettes.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Rafał Ostrowski
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
12
|
A Review on Antibiotic Resistance Gene (ARG) Occurrence and Detection in WWTP in Ishikawa, Japan and Colombo, Sri Lanka. EMERGING ISSUES IN THE WATER ENVIRONMENT DURING ANTHROPOCENE 2020. [DOI: 10.1007/978-981-32-9771-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Hingston P, Brenner T, Truelstrup Hansen L, Wang S. Comparative Analysis of Listeria monocytogenes Plasmids and Expression Levels of Plasmid-Encoded Genes during Growth under Salt and Acid Stress Conditions. Toxins (Basel) 2019; 11:toxins11070426. [PMID: 31330827 PMCID: PMC6669625 DOI: 10.3390/toxins11070426] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/31/2023] Open
Abstract
Listeria monocytogenes strains are known to harbour plasmids that confer resistance to sanitizers, heavy metals, and antibiotics; however, very little research has been conducted into how plasmids may influence L. monocytogenes’ ability to tolerate food-related stresses. To investigate this, a library (n = 93) of L. monocytogenes plasmid sequences were compared. Plasmid sequences were divided into two groups (G1 and G2) based on a repA phylogeny. Twenty-six unique plasmid types were observed, with 13 belonging to each of the two repA-based groups. G1 plasmids were significantly (p < 0.05) smaller than G2 plasmids but contained a larger diversity of genes. The most prevalent G1 plasmid (57,083 bp) was observed in 26 strains from both Switzerland and Canada and a variety of serotypes. Quantitative PCR (qPCR) revealed a >2-fold induction of plasmid-contained genes encoding an NADH peroxidase, cadmium ATPase, multicopper oxidase, and a ClpL chaperone protein during growth under salt (6% NaCl) and acid conditions (pH 5) and ProW, an osmolyte transporter, under salt stress conditions. No differences in salt and acid tolerance were observed between plasmid-cured and wildtype strains. This work highlights the abundance of specific plasmid types among food-related L. monocytogenes strains, the unique characteristics of G1 and G2 plasmids, and the possible contributions of plasmids to L. monocytogenes tolerance to food-related stresses.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas Brenner
- Department of Food, Nutrition and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Siyun Wang
- Department of Food, Nutrition and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
14
|
Kaplan E, Marano RBM, Jurkevitch E, Cytryn E. Enhanced Bacterial Fitness Under Residual Fluoroquinolone Concentrations Is Associated With Increased Gene Expression in Wastewater-Derived qnr Plasmid-Harboring Strains. Front Microbiol 2018; 9:1176. [PMID: 29937755 PMCID: PMC6003256 DOI: 10.3389/fmicb.2018.01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids harboring qnr genes confer resistance to low fluoroquinolone concentrations. These genes are of significant clinical, evolutionary and environmental importance, since they are widely distributed in a diverse array of natural and clinical environments. We previously extracted and sequenced a large (∼185 Kbp) qnrB-harboring plasmid, and several small (∼8 Kbp) qnrS-harboring plasmids, from Klebsiella pneumoniae isolates from municipal wastewater biosolids, and hypothesized that these plasmids provide host bacteria a selective advantage in wastewater treatment plants (WWTPs) that often contain residual concentrations of fluoroquinolones. The objectives of this study were therefore to determine the effect of residual fluoroquinolone concentrations on the growth kinetics of qnr plasmid-harboring bacteria; and on the copy number of qnr plasmids and expression of qnr genes. Electrotransformants harboring either one of the two types of plasmids could grow at ciprofloxacin concentrations exceeding 0.5 μg ml-1, but growth was significantly decreased at concentrations higher than 0.1 μg ml-1. In contrast, plasmid-free strains failed to grow even at 0.05 μg ml-1. No differences were observed in plasmid copy number under the tested ciprofloxacin concentrations, but qnr expression increased incrementally from 0 to 0.4 μg ml-1, suggesting that the transcription of this gene is regulated by antibiotic concentration. This study reveals that wastewater-derived qnr plasmids confer a selective advantage in the presence of residual fluoroquinolone concentrations and provides a mechanistic explanation for this phenomenon.
Collapse
Affiliation(s)
- Ella Kaplan
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel.,Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roberto B M Marano
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel.,Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel
| |
Collapse
|
15
|
Manaia CM, Rocha J, Scaccia N, Marano R, Radu E, Biancullo F, Cerqueira F, Fortunato G, Iakovides IC, Zammit I, Kampouris I, Vaz-Moreira I, Nunes OC. Antibiotic resistance in wastewater treatment plants: Tackling the black box. ENVIRONMENT INTERNATIONAL 2018; 115:312-324. [PMID: 29626693 DOI: 10.1016/j.envint.2018.03.044] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 05/20/2023]
Abstract
Wastewater is among the most important reservoirs of antibiotic resistance in urban environments. The abundance of carbon sources and other nutrients, a variety of possible electron acceptors such as oxygen or nitrate, the presence of particles onto which bacteria can adsorb, or a fairly stable pH and temperature are examples of conditions favouring the remarkable diversity of microorganisms in this peculiar habitat. The wastewater microbiome brings together bacteria of environmental, human and animal origins, many harbouring antibiotic resistance genes (ARGs). Although numerous factors contribute, mostly in a complex interplay, for shaping this microbiome, the effect of specific potential selective pressures such as antimicrobial residues or metals, is supposedly determinant to dictate the fate of antibiotic resistant bacteria (ARB) and ARGs during wastewater treatment. This paper aims to enrich the discussion on the ecology of ARB&ARGs in urban wastewater treatment plants (UWTPs), intending to serve as a guide for wastewater engineers or other professionals, who may be interested in studying or optimizing the wastewater treatment for the removal of ARB&ARGs. Fitting this aim, the paper overviews and discusses: i) aspects of the complexity of the wastewater system and/or treatment that may affect the fate of ARB&ARGs; ii) methods that can be used to explore the resistome, meaning the whole ARB&ARGs, in wastewater habitats; and iii) some frequently asked questions for which are proposed addressing modes. The paper aims at contributing to explore how ARB&ARGs behave in UWTPs having in mind that each plant is a unique system that will probably need a specific procedure to maximize ARB&ARGs removal.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Nazareno Scaccia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Roberto Marano
- Department of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Elena Radu
- University of Technology Vienna, Institute for Water Quality and Resources Management, Karlsplatz 13/226, A-1040 Vienna, Austria; AGES - Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, A-1220 Vienna, Austria
| | - Francesco Biancullo
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Adventech-Advanced Environmental Technologies, Centro Empresarial e Tecnológico, Rua de Fundões 151, 3700-121 São João da Madeira, Portugal
| | - Francisco Cerqueira
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Gianuário Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Iakovos C Iakovides
- NIREAS-International Water Research Center and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ian Zammit
- Department of Civil Engineering, University of Salerno, SP24a, 84084 Fisciano, SA, Italy
| | - Ioannis Kampouris
- Institute for Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
16
|
Nicolás MF, Ramos PIP, Marques de Carvalho F, Camargo DRA, de Fátima Morais Alves C, Loss de Morais G, Almeida LGP, Souza RC, Ciapina LP, Vicente ACP, Coimbra RS, Ribeiro de Vasconcelos AT. Comparative Genomic Analysis of a Clinical Isolate of Klebsiella quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 Beta-Lactamases Producer Harboring Two Drug-Resistance Plasmids from Southeast Brazil. Front Microbiol 2018; 9:220. [PMID: 29503635 PMCID: PMC5820359 DOI: 10.3389/fmicb.2018.00220] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to unravel the genetic determinants responsible for multidrug (including carbapenems) resistance and virulence in a clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae by whole-genome sequencing and comparative analyses. Eighty-three clinical isolates initially identified as carbapenem-resistant K. pneumoniae were collected from nosocomial infections in southeast Brazil. After RAPD screening, the KPC-142 isolate, showing the most divergent DNA pattern, was selected for complete genome sequencing in an Illumina HiSeq 2500 instrument. Reads were assembled into scaffolds, gaps between scaffolds were resolved by in silico gap filling and extensive bioinformatics analyses were performed, using multiple comparative analysis tools and databases. Genome sequencing allowed to correct the classification of the KPC-142 isolate as K. quasipneumoniae subsp. similipneumoniae. To the best of our knowledge this is the first complete genome reported to date of a clinical isolate of this subspecies harboring both class A beta-lactamases KPC-2 and OKP-B-6 from South America. KPC-142 has one 5.2 Mbp chromosome (57.8% G+C) and two plasmids: 190 Kbp pKQPS142a (50.7% G+C) and 11 Kbp pKQPS142b (57.3% G+C). The 3 Kbp region in pKQPS142b containing the blaKPC−2 was found highly similar to that of pKp13d of K. pneumoniae Kp13 isolated in Southern Brazil in 2009, suggesting the horizontal transfer of this resistance gene between different species of Klebsiella. KPC-142 additionally harbors an integrative conjugative element ICEPm1 that could be involved in the mobilization of pKQPS142b and determinants of resistance to other classes of antimicrobials, including aminoglycoside and silver. We present the completely assembled genome sequence of a clinical isolate of K. quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer and discuss the most relevant genomic features of this important resistant pathogen in comparison to several strains belonging to K. quasipneumoniae subsp. similipneumoniae (phylogroup II-B), K. quasipneumoniae subsp. quasipneumoniae (phylogroup II-A), K. pneumoniae (phylogroup I), and K. variicola (phylogroup III). Our study contributes to the description of the characteristics of a novel K. quasipneumoniae subsp. similipneumoniae strain circulating in South America that currently represent a serious potential risk for nosocomial settings.
Collapse
Affiliation(s)
- Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | | | | | | | | | - Luiz G P Almeida
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Rangel C Souza
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | - Ana C P Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Roney S Coimbra
- Neurogenômica, Fiocruz Institute Renê Rachou, Belo Horizonte, Brazil
| | | |
Collapse
|
17
|
Paiva MC, Reis MP, Costa PS, Dias MF, Bleicher L, Scholte LLS, Nardi RMD, Nascimento AMA. Identification of new bacteria harboring qnrS and aac(6')-Ib/cr and mutations possibly involved in fluoroquinolone resistance in raw sewage and activated sludge samples from a full-scale WWTP. WATER RESEARCH 2017; 110:27-37. [PMID: 27984803 DOI: 10.1016/j.watres.2016.11.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plants (WWTPs) harbor bacteria and antimicrobial resistance genes, favoring gene exchange events and resistance dissemination. Here, a culture-based and metagenomic survey of qnrA, qnrB, qnrS, and aac(6')-Ib genes from raw sewage (RS) and activated sludge (AS) of a full-scale municipal WWTP was performed. A total of 96 bacterial isolates were recovered from nalidixic acid-enrichment cultures. Bacteria harboring the aac(6')-Ib gene predominated in RS, whereas qnrS-positive isolates were specific to AS. Novel qnrS- and aac(6')-Ib-cr positive species were identified: Morganella morganii, Providencia rettgeri, and Pseudomonas guangdongensis (qnrS), and Alcaligenes faecalis and P. rettgeri (aac(6')-Ib-cr). Analysis of qnrS and aac(6')-Ib sequences from isolates and clone libraries suggested that the diversity of qnrS is wider than that of aac(6')-Ib. A large number of amino acid mutations were observed in the QnrS and AAC(6')-Ib proteins at previously undetected positions, whose structural implications are not clear. An accumulation of mutations at the C72, Q73, L74, A75 and M76 positions of QnrS, and D181 of AAC(6')-Ib might be important for resistance. These findings add significant information on bacteria harboring qnrS and aac(6')-Ib genes, and the presence of novel mutations that may eventually emerge in clinical isolates.
Collapse
Affiliation(s)
- Magna C Paiva
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Campus Dona Lindu, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia S Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcela F Dias
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Larissa L S Scholte
- Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Regina M D Nardi
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Fiegen U, Klein G, de Jong A, Kehrenberg C. Detection of a Novel qnrB19-Carrying Plasmid Variant Mediating Decreased Fluoroquinolone Susceptibility in Salmonella enterica Serovar Hadar. Microb Drug Resist 2016; 23:280-284. [PMID: 27404660 DOI: 10.1089/mdr.2016.0067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thirty Salmonella enterica subsp. enterica serovar Hadar isolates of avian origin collected between 2007 and 2010 from chicken carcasses in five geographically spread abattoirs in Germany were investigated for plasmid-mediated quinolone resistance determinants. Four isolates were identified by PCR analysis and hybridization experiments to carry qnrB genes. The isolates were indistinguishable by their XbaI macrorestriction patterns and did not exhibit a mutation in the quinolone resistance-determining regions of the DNA gyrase and topoisomerase IV genes. The qnrB genes were found to be located on small plasmids of ∼2.6 kb, which mediated decreased susceptibility only to quinolones. The plasmids were assigned to the same type, pHAD28, and transformation studies into an Escherichia coli recipient strain confirmed their transferability. Sequence analysis of the complete plasmid pHAD28 revealed the presence of a qnrB19 gene. The gene was found on a novel variant of qnrB19-harboring plasmids with high similarity to plasmids pPAB19-3 from E. coli and pPAB19-4 from Salmonella sp. M9397. A presumptive recombination side was detected, suggesting that interplasmid recombination events might have played a role in the development of this plasmid variant.
Collapse
Affiliation(s)
- Ulrike Fiegen
- 1 Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover , Foundation, Hannover, Germany
| | - Günter Klein
- 1 Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover , Foundation, Hannover, Germany
| | - Anno de Jong
- 2 Bayer Animal Health GmbH , Leverkusen, Germany
| | - Corinna Kehrenberg
- 1 Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover , Foundation, Hannover, Germany
| |
Collapse
|