1
|
Khan MS, Jahan N, Khatoon R, Ansari FM, Ahmad S. An Update on Diabetic Foot Ulcer and Its Management Modalities. Indian J Microbiol 2024; 64:1401-1415. [PMID: 39678959 PMCID: PMC11645353 DOI: 10.1007/s12088-023-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2024] Open
Abstract
One of the most prominent challenges related to the management of diabetes is a diabetic foot ulcer (DFU). It has been noted that > 50% of ulcers become clinically infected in diabetic patients, and up to 15-25% of diabetic patients may acquire DFU in their lifetime. DFU treatment is complicated for immune-compromised individuals and has a low success rate. Therefore, diabetic foot care must begin as soon as possible to avoid negative outcomes such as significant social, psychological, and economic consequences, lower limb amputation, morbidity, and mortality. The information provided in this piece is crucial for assisting clinicians and patients regarding novel and cutting-edge treatments for DFU. Due to irrational recourse to antibiotics, etiological agents like bacteria and fungi are exhibiting multidrug resistance (MDR), making topical antibiotic treatments for wounds ineffective with the drugs we currently have. This review article aims to compile the various strategies presently in use for managing and treating DFUs. The piece covers topics like biofilm, diagnosis, drug resistance, multidisciplinary teamwork, debridement, dressings, offloading, negative pressure therapy, topical antibiotics, surgery, cell and gene therapy, and other cutting-edge therapies.
Collapse
Affiliation(s)
- Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Noor Jahan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Razia Khatoon
- Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh 261303 India
| | - Faisal Moin Ansari
- Department of Surgery, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Siraj Ahmad
- Department of Community Medicine, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| |
Collapse
|
2
|
Arfaoui A, Rojo-Bezares B, Fethi M, López M, Toledano P, Sayem N, Ben Khelifa Melki S, Ouzari HI, Klibi N, Sáenz Y. Molecular characterization of Pseudomonas aeruginosa from diabetic foot infections in Tunisia. J Med Microbiol 2024; 73. [PMID: 38963417 DOI: 10.1099/jmm.0.001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.Gap statement. The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.Purpose. The aim was to determine the prevalence of P. aeruginosa isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.Methods. Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. P. aeruginosa were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered P. aeruginosa isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.Results. Sixteen P. aeruginosa isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (intI1 +aadA6+orfD+qacED1-sul1). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 exoU-positive, 9 exoS-positive and 2 exoU/exoS-positive strains. The lasR gene was truncated by ISPpu21 insertion sequence in one isolate, and a deletion of 64 bp in the rhlR gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all P. aeruginosa; however, the lasR-truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.Conclusions. Our study demonstrated for the first time the prevalence and the molecular characterization of P. aeruginosa strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maria López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Paula Toledano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Noureddine Sayem
- Service of Biology, Carthagene International Hospital of Tunisia, Tunis, Tunisia
| | | | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
3
|
Sultana R, Ahmed I, Saima S, Salam MT, Sultana S. Diabetic foot ulcer-a systematic review on relevant microbial etiology and antibiotic resistance in Asian countries. Diabetes Metab Syndr 2023; 17:102783. [PMID: 37257221 DOI: 10.1016/j.dsx.2023.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS Diabetic foot ulcer (DFU) is one of the most common but uncontrolled health issues of diabetic patients that needs more therapeutic considerations. This systematic review aims to study the current status of the etiological agents responsible for DFU, their frequency in some of the most occurring Asian countries, and their antibiotic resistance pattern based on available studies. METHODS Here, the literature survey was conducted on all the DFU studies with the records of etiological agents and conventional therapeutic treatment published until March 2021 using Medical Literature Analysis and Retrieval System Online (MEDLINE) and Web of Science Core Collection (WoSCC) database. RESULTS Overall, in our study, a total of 73 studies representing 12 Asian countries worldwide have been included. We found that the highest number of studies were reported from India (45%) followed by Pakistan (11%), China, Iran and others. 71% of recent studies reported DFU being attributed to poly-microbial infections while the dominant position was significantly secured by Gram- negative bacteria (77%, p = 0.34). Staphylococcus aureus was found to be the most prevalent isolate followed by Pseudomonas and then Escherichia coli (mean value - 22%, 17%, and 15% respectively). Antibiotic sensitivity pattern was determined based on availability in terms of median resistance (MR) and interquartile range (IQR) which showed the growing resistance developed by both Gram-positive and Gram-negative isolates. Gram positive pathogens were still reported as susceptible to vancomycin (MR 0%, IQR 0-22.8%), linezolid (MR 0%, IQR 0-15.53%) and imipenem (MR 11%, IQR 0-23.53%). Carbapenem genera, colistin, and amikacin were the most effective drugs against Gram-negative pathogens. CONCLUSION The findings of this study highly recommend searching for alternative and complementary therapeutic regimens instead of prescribing conventional drugs blindly without investigating the progression of the stages of the ulcer, which may help reduce the medical and economic burden of this disease.
Collapse
Affiliation(s)
- Rokaia Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka, 1205, Bangladesh; Purdue University, West Lafayette, IN, 47907, USA.
| | | | - Sabera Saima
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| | | | - Shahnaz Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka, 1205, Bangladesh.
| |
Collapse
|
4
|
Jokar J, Saleh RO, Rahimian N, Ghasemian A, Ghaznavi G, Radfar A, Zarenezhad E, Najafipour S. Antibacterial effects of single phage and phage cocktail against multidrug-resistant Klebsiella pneumoniae isolated from diabetic foot ulcer. Virus Genes 2023:10.1007/s11262-023-02004-z. [PMID: 37259013 DOI: 10.1007/s11262-023-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Diabetic foot ulcer (DFU) is associated with long-term hospitalization and amputation. Antibiotic resistance has made the infection eradication more difficult. Hence, seeking alternative therapies such as phage therapy seems necessary. Bacteriophages are viruses targeting specific bacterial species. Klebsiella pneumoniae (K. pneumoniae) is among causative agents of the DFU. In this study, the therapeutic effects of single phage and phage cocktail were investigated against multidrug-resistant (MDR) K. pneumonia isolated from DFU. Bacteriophages were isolated from animal feces and sewage samples, and were enriched and propagated using K. pneumoniae as the host. Thirty K. pneumoniae clinical isolates were collected from hospitalized patients with DFU. The antibiotic susceptibility pattern was determined using agar disk diffusion test. The phages' morphological traits were determined using transmission electron microscopy (TEM). The killing effect of isolated phages was assessed using plaque assay. Four phage types were isolated and recognized including KP1, KP2, KP3, and KP4. The bacterial rapid regrowth was observed following each single phage-host interaction, but not phage cocktail due to the evolution of mutant strains. Phage cocktail demonstrated significantly higher antibacterial activity than each single phage (p < 0.05) without any bacterial regrowth. The employment of phage cocktail was promising for the eradication of MDR-K. pneumoniae isolates. The development of phage therapy in particular, phage cocktail is promising as an efficient approach to eradicate MDR-K. pneumoniae isolated from DFU. The application of a specific phage cocktail can be investigated to try and achieve the eradication of various infections.
Collapse
Affiliation(s)
- Javad Jokar
- School of Advanced Technologies in Medicine, Fasa University of Medical Science, Fasa, Iran
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Anbar, Iraq
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghazal Ghaznavi
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, School of Advanced Medical Science, and Technologies, Shiraz University If Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Medical Parasitology, School of Advanced Medical Science, and Technologies, Shiraz University If Medical Sciences, Shiraz, Iran
| | - Elham Zarenezhad
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Science, Fasa, Iran.
| |
Collapse
|
5
|
Baig MS, Banu A, Zehravi M, Rana R, Burle SS, Khan SL, Islam F, Siddiqui FA, Massoud EES, Rahman MH, Cavalu S. An Overview of Diabetic Foot Ulcers and Associated Problems with Special Emphasis on Treatments with Antimicrobials. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071054. [PMID: 35888142 PMCID: PMC9316721 DOI: 10.3390/life12071054] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Abstract
One of the most significant challenges of diabetes health care is diabetic foot ulcers (DFU). DFUs are more challenging to cure, and this is particularly true for people who already have a compromised immune system. Pathogenic bacteria and fungi are becoming more resistant to antibiotics, so they may be unable to fight microbial infections at the wound site with the antibiotics we have now. This article discusses the dressings, topical antibacterial treatment, medications and debridement techniques used for DFU and provides a deep discussion of DFU and its associated problems. English-language publications on DFU were gathered from many different databases, such as Scopus, Web of Science, Science Direct, Springer Nature, and Google Scholar. For the treatment of DFU, a multidisciplinary approach involving the use of diagnostic equipment, skills, and experience is required. Preventing amputations starts with patient education and the implementation of new categorization systems. The microbiota involved in DFU can be better understood using novel diagnostic techniques, such as the 16S-ribosomal DNA sequence in bacteria. This could be achieved by using new biological and molecular treatments that have been shown to help prevent infections, to control local inflammation, and to improve the healing process.
Collapse
Affiliation(s)
- Mirza Shahed Baig
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad 431001, India;
| | - Ahmadi Banu
- Department of Pharmacology, Vishnu Institute of Pharmaceutical Education & Research, Narsapur 502313, India;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Ritesh Rana
- Department of Pharmaceutics, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Saharanpur 247341, India;
| | - Sushil S. Burle
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India;
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, MUP’s College of Pharmacy (B Pharm), Degaon, Risod, Washim 444504, India;
- Correspondence: (S.L.K.); (M.H.R.); (S.C.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, MUP’s College of Pharmacy (B Pharm), Degaon, Risod, Washim 444504, India;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Correspondence: (S.L.K.); (M.H.R.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (S.L.K.); (M.H.R.); (S.C.)
| |
Collapse
|
6
|
Comparative synthetic study, in silico screening and biological evaluation of some substituted tetrahydropyrimidine-2-one derivatives as potential DHFR inhibitors. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns3.6198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In present study we have selected pyrimidine scaffold to design and develop some DHFR inhibitors as potential antibacterial and antifungal agents. The designed derivatives were first screened through ADMET property calculations and then those possess drug-likeness properties were subjected for the molecular docking studies. The derivatives which were found to be significant DHFR inhibition potential were subjected for the synthesis followed by spectral analysis and biological evaluation. From this virtual screening, it was concluded that all the compounds possess drug-like properties and hence were subjected to molecular docking studies. The selected derivatives were synthesized and subjected for in vitro biological evaluation. The comparative study for synthesis of the derivatives such as conventional, ultrasonic, microwave synthesis was carried out. It was also observed that yield of the compound was very good in microwave assisted synthesis i.e. 73.24% which is almost 30-40% more than that of the conventional and ultrasonic method. In mass spectrum it was observed that, product obtained through microwave method was completely pure and did not displayed any peak of starting material, whereas product obtained through conventional and ultrasonic method showed presence of starting material.
Collapse
|
7
|
Diabetic foot ulcer, antimicrobial remedies and emerging strategies for the treatment. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns3.6199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to the International Diabetes Federation's 2015 study, diabetes affects over 415 million people globally (5 million of whom die each year), and the incidence of diabetes is expected to climb to over 640 million (1 in 10) by 2040. (IDF 2015). Diabetes foot ulcers (DFU) are one of the most significant diabetic health consequences. Antimicrobial treatments, such as dressings, topical therapies, medicines, drugs, debridement procedures, molecular, cellular, and gene therapies, plant extracts, antimicrobial peptides, growth factors, devices, ozone, and energy-based therapies, would be the focus of this study. Scopus, Web of Science, Bentham Science, Science Direct, and Google Scholar were among the sources used to compile the English-language publications on DFU. DFU treatment requires a multidisciplinary approach that includes the use of proper diagnostic tools, competence, and experience. To prevent amputations, this starts with patient education and the use of new categories to steer treatment. New diagnostic methods, such as the 16S ribosomal DNA sequence in bacteria, should become available to acquire a better knowledge of the microbiota in DFUs.
Collapse
|
8
|
Mashaly M, Kheir MAE, Ibrahim M, Khafagy W. Aerobic bacteria isolated from diabetic foot ulcers of Egyptian patients: types, antibiotic susceptibility pattern and risk factors associated with multidrug-resistant organisms. Germs 2022; 11:570-582. [PMID: 35096674 DOI: 10.18683/germs.2021.1292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Diabetic foot infection (DFI) is one of the common diabetic complications. Pathogens causing DFI and their antibiotic susceptibility vary with location. Therefore, empirical antibiotic therapy should be based on the pathogens that are most likely to be present. Aim: To identify the frequent aerobic bacteria causing DFI with detection of their antibiotic susceptibility to help clinicians in our community choose the best empirical antibiotic for DFI. METHODS Swabs were collected from 104 diabetic foot ulcers (DFUs). Aerobic bacterial cultures were done followed by bacterial identification and antibiotic susceptibility testing on VITEK® 2 system. Extended-spectrum beta-lacatamase (ESBL) detection was performed phenotypically and confirmed by multiplex-PCR for bla CTX-M, bla TEM, and bla SHV genes. RESULTS Aerobic bacterial infection was detected in 82/104 (78.8%) of the DFUs. Gram-negative bacilli (GNB) were isolated more frequently (56.1%) than Gram-positive cocci (GPC) (43.9%). The most common single-isolated bacteria were K. pneumoniae (26.8%), S. aureus and coagulase negative staphylococci (22% for each). The only significant independent predictors of DFI with GNB or GPC were long DM duration and frequent hospitalizations, respectively. The most active antibiotics were amikacin, tigecycline and meropenem for GNB, and linezolid and vancomycin for staphylococci. Multidrug-resistance prevalence was 95.1%. ESBL was detected in 52.6% of Enterobacteriaceae; the bla CTX-M gene was the most common (90%), followed by bla TEM (65%) and bla SHV (35%). Peripheral neuropathy was the single independent predictor for DFI with ESBL producers (adjusted OR=15.5). CONCLUSIONS There is a notable local pattern of DFI bacteriology in our community. Our findings could be valuable in developing the future empirical treatment guidelines for DFIs.
Collapse
Affiliation(s)
- Mervat Mashaly
- MD, Assistant Professor, Clinical Pathology Department, Clinical Microbiology Unit, Faculty of Medicine, Mansoura University, El Gomhoryia Street, Mansoura, 35516, Egypt
| | - Mohamed Abo El Kheir
- MD, Professor, General Surgery Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Ibrahim
- MSc student, General Practitioner, Sherbin Central Hospital, Ministry of Health and Population, Mansoura, 35516, Egypt
| | - Wael Khafagy
- MD, Professor, General Surgery Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Diabetic Foot Ulcer Infections and Pseudomonas aeruginosa Biofilm Production During the COVID-19 Pandemic. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the different waves of the coronavirus (COVID-19) pandemic, there has been an increased incidence of diabetes mellitus and diabetic foot infections. Among gram-negative bacteria, Pseudomonas aeruginosa is the predominant causative agent for diabetic foot ulcer infections in low-resource countries. P. aeruginosa possesses a variety of virulence factors, including biofilm formation. Biofilm formation is an important benchmark characteristic in the pathophysiology of diabetic foot ulceration. The main objective of the current study was to identify the most commonly isolated organisms and their antibiotic susceptibility patterns in diabetic foot patients during the COVID-19 pandemic. We also determined the genes associated with bacterial persistence and biofilm formation in the predominantly isolated organism. Accordingly, 100 wound swab samples were collected from diabetic foot patients from different hospitals in Alexandria, Egypt. Through phenotypic detection of biofilm formation, 93% (40) of the 43 P. aeruginosa isolates examined were categorized as biofilm producers. Molecular detection of the biofilm-encoding genes among the 43 P. aeruginosa isolates was as follows: algD (100%), pelF (88%) and pslD (49.7%), and this highlights a need for biofilm formation inhibitors to prevent the persistence of bacterial pathogens, and thus achieve better clinical outcomes in diabetic foot ulcer infections.
Collapse
|
10
|
Tedesco P, Palma Esposito F, Masino A, Vitale GA, Tortorella E, Poli A, Nicolaus B, van Zyl LJ, Trindade M, de Pascale D. Isolation and Characterization of Strain Exiguobacterium sp. KRL4, a Producer of Bioactive Secondary Metabolites from a Tibetan Glacier. Microorganisms 2021; 9:microorganisms9050890. [PMID: 33919419 PMCID: PMC8143284 DOI: 10.3390/microorganisms9050890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Extremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China. Complete phenotypic analysis was performed revealing the great adaptability of the strain to a wide range of temperatures (5-40 °C), pHs (5.5-8.5), and salinities (0-15% w/v NaCl). Genome sequencing identified KRL4 as a member of the placeholder genus Exiguobacterium_A and annotation revealed that only half of the protein-encoding genes (1522 of 3079) could be assigned a putative function. An analysis of the secondary metabolite clusters revealed the presence of two uncharacterized phytoene synthase containing pathways and a novel siderophore pathway. Biological assays confirmed that the strain produces molecules with antioxidant and siderophore activities. Furthermore, intracellular extracts showed nematocidal activity towards C. elegans, suggesting that strain KRL4 is a source of anthelmintic compounds.
Collapse
Affiliation(s)
- Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Fortunato Palma Esposito
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Antonio Masino
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Giovanni Andrea Vitale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Emiliana Tortorella
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, 80078 Naples, Italy; (A.P.); (B.N.)
| | - Barbara Nicolaus
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, 80078 Naples, Italy; (A.P.); (B.N.)
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, 7535 Cape Town, South Africa; (L.J.v.Z.); (M.T.)
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, 7535 Cape Town, South Africa; (L.J.v.Z.); (M.T.)
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
- Correspondence:
| |
Collapse
|
11
|
Srivastava P, Sivashanmugam K. Efficacy of sub-MIC level of meropenem and ciprofloxacin against extensive drug-resistant (XDR) Pseudomonas aeruginosa isolates of diabetic foot ulcer patients. INFECTION GENETICS AND EVOLUTION 2021; 92:104824. [PMID: 33774177 DOI: 10.1016/j.meegid.2021.104824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
The increasing emergence of extensive drug-resistant bacteria (XDR) among chronic diabetic foot ulcer patients (DFU) possess serious threat which leads to foot amputation. The ideal measurement estimations of the presently accessible medications are getting insufficient against extensive drug-resistant strains. For quite a long-time piperacillin monotherapy, Piperacillin-tazobactam, ceftazidime, Carbapenem class of anti-toxin, ceftalozane-Tazobactam, and so on, has been the suggested therapy towards persistent instances of diabetic foot ulcer but because of the resistance mechanism of the potent pathogens the potency and usage of the antibiotic concentration regime is under the radar. Based on this hypothesis two isolates namely VIT PC 7 &VIT PC 9 were found to be resistant to all five classes of antibiotics exhibiting extensive drug resistance (XDR). The whole-genome sequence of Pseudomonas aeruginosa VIT PC 7 and VIT PC 9 data showed the presence of various RND efflux related genes and antibiotic resistance genes. The broth microdilution assay showed minimum inhibitory concentration (MIC) for ciprofloxacin and meropenem, Synergistic test was performed through checkerboard analysis and sub-MIC concentration of ciprofloxacin/meropenem was deduced using ∑ FICI, Time kills analysis was done for varying time interval to check the maximum reduction in CFU/ml of the bacterial cells, sub-MIC level of meropenem and ciprofloxacin showed inhibitory activity at lower concentration respectively. In vitro time-kill analysis showed the decrease in the number of cells, suggesting that the synergistic antimicrobial combinations are effective in decreasing the MIC level, and combinational test involving sub-MIC level of antibiotics also showed maximum reduction in biofilm forming cells, portraying the effectiveness of both the drugs. Accordingly, an expansion in the antimicrobial spectrum can be accomplished by utilizing the ideal measurements of ciprofloxacin/meropenem in persistent condition like diabetic foot ulcer, sub-MIC level of ciprofloxacin/meropenem could be a promising choice for anticipation against the ongoing drug-resistant crisis.
Collapse
Affiliation(s)
- Prakhar Srivastava
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | | |
Collapse
|
12
|
Characterization of a New Mixture of Mono-Rhamnolipids Produced by Pseudomonas gessardii Isolated from Edmonson Point (Antarctica). Mar Drugs 2020; 18:md18050269. [PMID: 32443698 PMCID: PMC7281774 DOI: 10.3390/md18050269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Rhamnolipids (RLs) are surface-active molecules mainly produced by Pseudomonas spp. Antarctica is one of the less explored places on Earth and bioprospecting for novel RL producer strains represents a promising strategy for the discovery of novel structures. In the present study, 34 cultivable bacteria isolated from Edmonson Point Lake, Ross Sea, Antarctica were subjected to preliminary screening for the biosurfactant activity. The positive strains were identified by 16S rRNA gene sequencing and the produced RLs were characterized by liquid chromatography coupled to high resolution mass spectrometry (LC-HRESIMS) and liquid chromatography coupled with tandem spectrometry (LC-MS/MS), resulting in a new mixture of 17 different RL congeners, with six previously undescribed RLs. We explored the influence of the carbon source on the RL composition using 12 different raw materials, such as monosaccharides, polysaccharides and petroleum industry derivatives, reporting for the first time the production of RLs using, as sole carbon source, anthracene and benzene. Moreover, we investigated the antimicrobial potential of the RL mixture, towards a panel of both Gram-positive and Gram-negative pathogens, reporting very interesting results towards Listeria monocytogenes with a minimum inhibitory concentration (MIC) value of 3.13 µg/mL. Finally, we report for the first time the antimicrobial activity of RLs towards three strains of the emerging multidrug resistant Stenotrophomonas maltophilia with MIC values of 12.5 µg/mL.
Collapse
|
13
|
Yang Z, Shi Y, Zhang C, Luo X, Chen Y, Peng Y, Gong Y. Lytic Bacteriophage Screening Strategies for Multidrug-Resistant Bloodstream Infections in a Burn Intensive Care Unit. Med Sci Monit 2019; 25:8352-8362. [PMID: 31693655 PMCID: PMC6858784 DOI: 10.12659/msm.917706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Increasing antibiotic resistance and multidrug resistance (MDR) in patients with bloodstream infection (BSI) has resulted in treatment using bacteriophage. This study aimed to identify Gram-negative bacilli and Gram-positive cocci and antibiotic resistance in patients with BSI in a burn intensive care unit (BICU). The environment, including sewage systems, were investigated for the presence of lytic bacteriophage. MATERIAL AND METHODS Between January 2011 to December 2017, 486 patients with BSI were admitted to the BICU. Blood culture identified the main infectious organisms. Bacterial screening tests for antibiotic resistance included the D test and the modified Hodge test (MHT). Lytic bacteriophage was isolated from the environment. RESULTS In 486 patients with BSI, the main causative organisms were Gram-negative bacilli (64.6%), Gram-positive cocci (27.7%), and fungi (7.7%). The main pathogenic organisms that showed multidrug resistance (MDR) were Acinetobacter baumannii (26.0%), Staphylococcus aureus (16.8%), and Pseudomonas aeruginosa (14.2%). Bacteriophage was mainly isolated from Gram-negative bacilli. Screening of hospital and residential sewage systems identified increased levels of bacteriophage in hospital sewage. CONCLUSIONS The causative organisms of BSI and the presence of MDR in a hospital BICU were not typical, which supports the need for routine bacterial monitoring. Hospital sewage provides a potential source of bacteriophage for the treatment of MDR pathogenic bacteria.
Collapse
|
14
|
Evaluation of Drug Susceptibility of Microorganisms in Odontogenic Inflammations and Dental Surgery Procedures Performed on an Outpatient Basis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2010453. [PMID: 31687380 PMCID: PMC6800958 DOI: 10.1155/2019/2010453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/06/2019] [Accepted: 09/11/2019] [Indexed: 01/05/2023]
Abstract
Bacterial infections are the most common cause of purulent soft tissue inflammations in the head and neck area. These bacteria are also responsible for the majority of inflammatory complications after third molar removal. The key to success of antibacterial treatment in both cases is the use of an appropriate antibacterial agent. The aim of the study was to evaluate the susceptibility profile of bacteria isolated from material collected from patients with intraoral odontogenic abscesses. The test material consisted of swabs taken from the odontogenic abscesses, after their incision and drainage. Another swab was collected from the lesion area, 10 days after the initial visit. Results were compared with an identical study conducted on a control group of healthy patients, who had undergone third molar removal. Bacteria identified in this study consisted of aerobic and anaerobic strains, both Gram-positive and Gram-negative. According to the EUCAST guidelines, none of the tested antibiotics was recommended for all identified bacteria. The percentage of bacterial strains sensitive to amoxicillin and clavulanic acid was 78.13% and 81.48% in the study and control groups, respectively, whereas, the percentage of those sensitive to clindamycin was 96.43% and 80.00%, respectively. For Gram-negative aerobic bacteria, gentamicin and ciprofloxacin were among medications affecting all cultured species. 100.00% of strains were found to be susceptible to these antibiotics. Statistically significant relationship between the presence of Gram-negative aerobic strains and the occurrence of complications was found. In the case of the most frequently occurring bacteria in the study, amoxicillin with clavulanic acid and clindamycin were shown to be very effective. In cases of severe purulent odontogenic inflammations, it is recommended to use a combination of antibiotics. Amoxicillin with ciprofloxacin and clindamycin with cefuroxime seem to be the proper choices based on the results of this study.
Collapse
|
15
|
Srivastava P, Sivashanmugam K. Combinatorial Drug Therapy for Controlling Pseudomonas aeruginosa and Its Association With Chronic Condition of Diabetic Foot Ulcer. INT J LOW EXTR WOUND 2019; 19:7-20. [DOI: 10.1177/1534734619873785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes mellitus, major observations of DFU cases have reported on amputation of foot region, and microbial bioburden during DFU is a major cause that affects healing of the wound regions. Pathogenic microbes are routinely isolated from these wound regions, especially Staphylococcus, Pseudomonas, Klebsiella, and Escherichia coli have been reported, whereas higher prevalence of Pseudomonas species during chronic condition in the deeper part of the wound, when left untreated, leads to gangrene. Multiple drug-resistant Pseudomonas strains are a new threat because of their biofilm-forming ability, making it more potent and incurable. Acyl homoserine lactones (AHL) are a group of signaling molecules that can regulate biofilm growth, and Las and Rhl operon generally work in tandem to initiate biofilm formation by Pseudomonas species. These signaling molecules also initiate virulence factors that correlates upregulation of inflammatory responses, and AHL can be a therapeutic target in order to prevent the efficacy of multiple drug-resistant strains that form biofilm and also can be an alternative solution against control of multiple drug-resistant strains.
Collapse
|
16
|
Changing paradigm of antibiotic resistance amongst Escherichia coli isolates in Indian pediatric population. PLoS One 2019; 14:e0213850. [PMID: 30995225 PMCID: PMC6469777 DOI: 10.1371/journal.pone.0213850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance happens when microorganisms mutates in manners that render the drugs like antibacterial, antiviral, antiparasitic and antifungal, ineffective. The normal mutation process is encouraged by the improper use of antibiotics. Mutations leading to quinolone resistance occur in a highly conserved region of the quinolone resistance-determining region (QRDR) of DNA gyrAse and topoisomerase IV gene. We analyzed antibiotic resistant genes and single nucleotide polymorphism (SNP) in gyrA and parC genes in QRDR in 120 E. coli isolates (both diarrheagenic and non-pathogenic) recovered from fresh stool samples collected from children aged less than 5 years from Delhi, India. Antibiotic susceptibility testing was performed according to standard clinical and laboratory standards institute (CLSI) guidelines. Phylogenetic analysis showed the clonal diversity and phylogenetic relationships among the E. coli isolates. The SNP analysis depicted mutations in gyrA and parC genes in QRDR. The sul1 gene, responsible for sulfonamide resistance, was present in almost half (47.5%) of the isolates across the diseased and healthy samples. The presence of antibiotic resistance genes in E. coli isolates from healthy children indicate the development, dissemination and carriage of antibiotic resistance in their gut. Our observations suggest the implementation of active surveillance and stewardship programs to promote appropriate antibiotic use and minimizing further danger.
Collapse
|
17
|
Bythwood TN, Soni V, Lyons K, Hurley-Bacon A, Lee MD, Hofacre C, Sanchez S, Maurer JJ. Antimicrobial Resistant Salmonella enterica Typhimurium Colonizing Chickens: The Impact of Plasmids, Genotype, Bacterial Communities, and Antibiotic Administration on Resistance. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
18
|
Chainier D, Barraud O, Masson G, Couve-Deacon E, François B, Couquet CY, Ploy MC. Integron Digestive Carriage in Human and Cattle: A "One Health" Cultivation-Independent Approach. Front Microbiol 2017; 8:1891. [PMID: 29021787 PMCID: PMC5624303 DOI: 10.3389/fmicb.2017.01891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/15/2017] [Indexed: 01/14/2023] Open
Abstract
Objectives: Dissemination of antimicrobial resistance (AMR) is a global issue that requires the adoption of a "One-Health" approach promoting integration of human and animal health. Besides culture-dependent techniques frequently used for AMR surveillance, cultivation-independent methods can give additional insights into the diversity and reservoir of AMR genetic determinants. Integrons are molecular markers that can provide overall and reliable estimation of AMR dissemination. In this study, considering the "One-Health" approach, we have analyzed the integron digestive carriage from stools of humans and cattle living in a same area and exposed to different antibiotic selection pressures. Methods: Three collections of human [general population (GP) and intensive care unit patients (ICUs)] and bovine (BOV) stool samples were analyzed. The three main classes of integrons were detected using a multiplex qPCR both from total DNA extracted from stools, and from Gram-negative bacteria obtained by culture after an enrichment step. Results: With the cultivation-independent approach, integron carriage was 43.8, 52.7, and 65.6% for GP, ICU, and BOV respectively, percentages being at least twofold higher to those obtained with the cultivation-dependent approach. Class 1 integrons were the most prevalent; class 2 integrons seemed more associated to cattle than to humans; no class 3 integron was detected. The integron carriage was not significantly different between GP and ICU populations according to the antibiotic consumption, whatever the approach. Conclusion: The cultivation-independent approach constitutes a complementary exploratory method to investigate the integron digestive carriage of humans and bovines, notably within subjects under antibiotic treatment. The high frequency of carriage of integrons in the gut is of clinical significance, integrons being able to easily acquire and exchange resistant genes under antibiotic selective pressure and so leading to the dissemination of resistant bacteria.
Collapse
Affiliation(s)
| | - Olivier Barraud
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France
| | - Geoffrey Masson
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France
| | | | - Bruno François
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France.,INSERM, CIC1435, CHU Limoges, Limoges, France
| | - Claude-Yves Couquet
- Laboratoire Départemental d'Analyses et de Recherches de la Haute-Vienne, Limoges, France
| | | |
Collapse
|
19
|
Synthesis, Characterization, and Antibacterial Activities of High-Valence Silver Propamidine Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7070736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One 2017; 12:e0179245. [PMID: 28719657 PMCID: PMC5515400 DOI: 10.1371/journal.pone.0179245] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/28/2017] [Indexed: 12/27/2022] Open
Abstract
Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest that these bacteriophages could be potential therapeutic options for treating septic wounds caused by P. aeruginosa, S. aureus, K. pneumoniae and E. coli.
Collapse
Affiliation(s)
| | | | - Dakshayani Lomada
- Department of Genetic and Genomics, Yogi Vemana University, Kadapa, AP, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP, India
| | | |
Collapse
|
21
|
Sánchez-Sánchez M, Cruz-Pulido WL, Bladinieres-Cámara E, Alcalá-Durán R, Rivera-Sánchez G, Bocanegra-García V. Bacterial Prevalence and Antibiotic Resistance in Clinical Isolates of Diabetic Foot Ulcers in the Northeast of Tamaulipas, Mexico. INT J LOW EXTR WOUND 2017; 16:129-134. [DOI: 10.1177/1534734617705254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diabetic foot ulcers (DFUs) are a serious and common problem in patients with diabetes mellitus and constitute one of the major causes of lower extremity amputation. The microbiological profile of DFUs depends on the acute or chronic character of the wound. Aerobic gram-positive cocci are the predominant organisms isolated from DFUs. Diabetic foot biopsies from patients admitted to the Angiology and Vascular Surgery Hospital of the Northeast, in Reynosa, Tamaulipas from December 2011 to April 2016 were analyzed. The samples were processed using standard microbiology techniques. Antimicrobial susceptibility testing was carried out according to the protocol established by the Clinical & Laboratory Standards Institute (CLSI). We obtained 246 bacterial isolates, based on the results of phenotypic resistance. The least effective antibiotics for gram-positive bacteria were penicillin and dicloxacillin; for gram-negative bacteria, cefalotin and penicillin were the least effective. Levofloxacin, cefalotin, and amikacin were the most effective antibiotics for gram-positive and negative bacteria, respectively. Enterobacter genus was significantly associated with muscle biopsies ( P = .011) and samples without growth were significantly associated with specimens of pyogenic origin ( P = .000). In 215 DFU samples, we found that Staphylococcus aureus was the most commonly isolated pathogen followed by Enterobacter sp. This is consistent with previous reports. Enterobacter species may play an important role in the colonization/infection of certain tissues; however, further studies are needed in this regard.
Collapse
Affiliation(s)
- Mario Sánchez-Sánchez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | | | | | | | - Gildardo Rivera-Sánchez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | | |
Collapse
|