1
|
Lestin L, Villemur R. The bacterial strains JAM1 T and GP59 of the species Methylophaga nitratireducenticrescens differ in their expression profiles of denitrification genes in oxic and anoxic cultures. PeerJ 2024; 12:e18361. [PMID: 39484211 PMCID: PMC11526790 DOI: 10.7717/peerj.18361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/29/2024] [Indexed: 11/03/2024] Open
Abstract
Background Strain JAM1T and strain GP59 of the methylotrophic, bacterial species Methylophaga nitratireducenticrescens were isolated from a microbial community of the biofilm that developed in a fluidized-bed, methanol-fed, marine denitrification system. Despite of their common origin, both strains showed distinct physiological characters towards the dynamics of nitrate (NO 3 - ) reduction. Strain JAM1T can reduceNO 3 - to nitrite (NO 2 - ) but notNO 2 - to nitric oxide (NO) as it lacks a NO-formingNO 2 - reductase. Strain GP59 on the other hand can carry the complete reduction ofNO 3 - to N2. Strain GP59 cultured under anoxic conditions shows a 24-48h lag phase beforeNO 3 - reduction occurs. In strain JAM1T cultures,NO 3 - reduction begins immediately with accumulation ofNO 2 - . Furthermore,NO 3 - is reduced under oxic conditions in strain JAM1T cultures, which does not appear in strain GP59 cultures. These distinct characters suggest differences in the regulation pathways impacting the expression of denitrification genes, and ultimately growth. Methods Both strains were cultured under oxic conditions either with or withoutNO 3 - , or under anoxic conditions withNO 3 - . Transcript levels of selected denitrification genes (nar1 and nar2 encodingNO 3 - reductases, nirK encodingNO 2 - reductase, narK12f encodingNO 3 - /NO 2 - transporter) and regulatory genes (narXL and fnr) were determined by quantitative reverse transcription polymerase chain reaction. We also derived the transcriptomes of these cultures and determined their relative gene expression profiles. Results The transcript levels of nar1 were very low in strain GP59 cultured under oxic conditions withoutNO 3 - . These levels were 37 times higher in strain JAM1T cultured under the same conditions, suggesting that Nar1 was expressed at sufficient levels in strain JAM1T before the inoculation of the oxic and anoxic cultures to carryNO 3 - reduction with no lag phase. Transcriptomic analysis revealed that each strain had distinct relative gene expression profiles, and oxygen had high impact on these profiles. Among denitrification genes and regulatory genes, the nnrS3 gene encoding factor involved in NO-response function had its relative gene transcript levels 5 to 10 times higher in strain GP59 cultured under oxic conditions withNO 3 - than those in both strains cultured under oxic conditions withoutNO 3 - . Since NnrS senses NO, these results suggest that strain GP59 reducedNO 3 - to NO under oxic conditions, but because of the oxic environment, NO is oxidized back toNO 3 - by flavohemoproteins (NO dioxygenase; Hmp), explaining whyNO 3 - reduction is not observed in strain GP59 cultured under oxic conditions. Conclusions Understanding how these two strains manage the regulation of the denitrification pathway provided some clues on how they response to environmental changes in the original biofilm community, and, by extension, how this community adapts in providing efficient denitrifying activities.
Collapse
Affiliation(s)
- Livie Lestin
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Richard Villemur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
2
|
Hamada MA, Soliman ERS. Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiol 2023; 23:210. [PMID: 37543572 PMCID: PMC10403818 DOI: 10.1186/s12866-023-02941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND A wide variety of microorganisms, including bacteria, live in the rhizosphere zone of plants and have an impact on plant development both favorably and adversely. The beneficial outcome is due to the presence of rhizobacteria that promote plant growth (PGPR). RESULTS In this study, a bacterial strain was isolated from lupin rhizosphere and identified genetically as Serratia marcescens (OK482790). Several biochemically and genetically characteristics were confirmed in vitro and in vivo to determine the OK482790 strain ability to be PGPR. The in vitro results revealed production of different lytic enzymes (protease, lipase, cellulase, and catalase), antimicrobial compounds (hydrogen cyanide, and siderophores), ammonia, nitrite, and nitrate and its ability to reduce nitrate to nitrite. In silico and in vitro screening proposed possible denitrification-DNRA-nitrification pathway for OK482790 strain. The genome screening indicated the presence of nitrite and nitrate genes encoding Nar membrane bound sensor proteins (NarK, NarQ and NarX). Nitrate and nitrite reductase encoding genes (NarI, NarJ, NarH, NarG and NapC/NirT) and (NirB, NirC, and NirD) are also found in addition to nitroreductases (NTR) and several oxidoreductases. In vivo results on wheat seedlings confirmed that seedlings growth was significantly improved by soil inoculation of OK482790 strain. CONCLUSIONS This study provides evidence for participation of S. marcescens OK482790 in nitrogen cycling via the denitrification-DNRA-nitrification pathway and for its ability to produce several enzymes and compounds that support the beneficial role of plant-microbe interactions to sustain plant growth and development for a safer environment.
Collapse
Affiliation(s)
- Marwa A Hamada
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Elham R S Soliman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
3
|
Cucaita A, Piochon M, Villemur R. Co-culturing Hyphomicrobium nitrativorans strain NL23 and Methylophaga nitratireducenticrescens strain JAM1 allows sustainable denitrifying activities under marine conditions. PeerJ 2021; 9:e12424. [PMID: 34760396 PMCID: PMC8567858 DOI: 10.7717/peerj.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Hyphomicrobium nitrativorans strain NL23 and Methylophaga nitratireducenticrescens strain JAM1 are the principal bacteria involved in the denitrifying activities of a methanol-fed, fluidized-bed marine denitrification system. Strain NL23 possesses the complete denitrification pathway, but cannot grow under marine conditions in pure cultures. Strain JAM1 is a marine bacterium that lacks genes encoding a dissimilatory nitrite (NO2 -) reductase and therefore cannot reduce NO2 -. Here, we report the characterization of some of their physiological traits that could influence their co-habitation. We also perform co-cultures to assess the potential synergy between the two strains under marine and denitrifying conditions. METHODOLOGY Anoxic planktonic pure cultures of both strains were grown with different concentrations of nitrate (NO3 -). Anoxic planktonic co-cultures could only be cultured on low NaCl concentrations for strain NL23 to grow. Biofilm co-cultures were achieved in a 500-mL bioreactor, and operated under denitrifying conditions with increasing concentrations of NaCl. NO3 - and NO2 - concentrations and the protein content were measured to derive the denitrification rates. The concentrations of both strains in co-cultures were determined by quantitative PCR (qPCR). Ectoine concentration was measured by mass spectrometry in the biofilm co-culture. The biofilm was visualized by fluorescence in situ hybridization. Reverse-transcription-qPCR and RNA-seq approaches were used to assess changes in the expression profiles of genes involved in the nitrogen pathways in the biofilm cultures. RESULTS Planktonic pure cultures of strain JAM1 had a readiness to reduce NO3 - with no lag phase for growth in contrast to pure cultures of strain NL23, which had a 2-3 days lag phase before NO3 - starts to be consumed and growth to occur. Compared to strain NL23, strain JAM1 has a higher µmax for growth and higher specific NO3 - reduction rates. Denitrification rates were twice higher in the planktonic co-cultures than those measured in strain NL23 pure cultures. The biofilm co-cultures showed sustained denitrifying activities and surface colonization by both strains under marine conditions. Increase in ectoine concentrations was observed in the biofilm co-culture with the increase of NaCl concentrations. Changes in the relative transcript levels were observed in the biofilm culture with genes encoding NapA and NapGH in strain NL23. The type of medium had a great impact on the expression of genes involved in the N-assimilation pathways in both strains. CONCLUSIONS These results illustrate the capacity of both strains to act together in performing sustainable denitrifying activities under marine conditions. Although strain JAM1 did not contribute in better specific denitrifying activities in the biofilm co-cultures, its presence helped strain NL23 to acclimate to medium with NaCl concentrations >1.0%.
Collapse
Affiliation(s)
- Alexandra Cucaita
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Marianne Piochon
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Richard Villemur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| |
Collapse
|
4
|
Zhai S, Ji M, Zhao Y, Su X. Shift of bacterial community and denitrification functional genes in biofilm electrode reactor in response to high salinity. ENVIRONMENTAL RESEARCH 2020; 184:109007. [PMID: 32086003 DOI: 10.1016/j.envres.2019.109007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 05/14/2023]
Abstract
High salinity suppresses denitrification by inhibiting microorganism activities. The shift of microbial community and denitrification functional genes under salinity gradient was systematically investigated in a biofilm electrode reactor (BER) and biofilm reactor (BR) systems. Denitrification efficiency of both BER and BR was not significantly inhibited during the period of low salinity (0-2.0%). As the salinity increased to 2.5%, BER could overcome the impact of high salinity and maintained a relatively stable denitrification performance, and the effluent NO3--N was lower than 1.5 mg/L. High salinity (>2.5%) impoverished microbial diversity and altered the microbial community in both BER and BR. However, two genera Methylophaga and Methyloexplanations were enriched in BER due to electrochemical stimulation, which can tolerate high salinity (>3.0%). The relative abundance of Methylophaga in BER was almost 10 times as much as in BR. Paracoccus is a hydrogen autotrophic denitrifier, which was obviously inhibited with 1.0% NaCl. The hetertrophic denitrifiers were primarily responsible for the nitrate removal in the BER compared to the autotrophic denitrifiers. The abundance and proportion of denitrifying functional genes confirmed that main denitrifiers shift to salt-tolerant species (nirK-type denitrifiers) to reduce the toxic effects. The napA (2.2 × 108 to 6.5 × 108 copies/g biofilm) and nosZ (2.2 × 107 to 4.4 × 107 copies/g biofilm) genes were more abundant in BER compared to BR's, which was attributed to the enrichment of Methylophaga alcalica and Methyloversatilis universalis FAM5 in the BER. The results proved that BER had greater denitrification potential under high salinity (>2.0%) stress at the molecular level.
Collapse
Affiliation(s)
- Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin, 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin, 300350, China.
| | - Xiao Su
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Water Supply Group Co. Ltd, Tianjin, 300121, China
| |
Collapse
|
5
|
Villemur R, Payette G, Geoffroy V, Mauffrey F, Martineau C. Dynamics of a methanol-fed marine denitrifying biofilm: 2-impact of environmental changes on the microbial community. PeerJ 2019; 7:e7467. [PMID: 31423359 PMCID: PMC6697039 DOI: 10.7717/peerj.7467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The biofilm of a methanol-fed, marine denitrification system is composed of a multi-species microbial community, among which Hyphomicrobium nitrativorans and Methylophaga nitratireducenticrescens are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm was cultivated in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific environmental conditions. We previously reported the impact of these changes on the denitrifying activities and the co-occurrence of H. nitrativorans strain NL23 and M. nitratireducenticrescens in the biofilm cultures. Here, we report the impact of these changes on the dynamics of the overall microbial community of the denitrifying biofilm. METHODS The original biofilm (OB) taken from the denitrification system was cultivated in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate/methanol concentrations and temperatures. The OB was also cultivated in the commercial Instant Ocean seawater (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA gene sequences. Culture approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of selected biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures of H. nitrativorans strain NL23 and M. nitratireducenticrescens strain GP59. RESULTS High proportions of M. nitratireducenticrescens occurred in the biofilm cultures. H. nitrativorans strain NL23 was found in high proportion in the OB, but was absent in the biofilm cultures cultivated in the ASW medium at 2.75% NaCl. It was found however in low proportions in the biofilm cultures cultivated in the ASW medium at 0-1% NaCl and in the IO biofilm cultures. Denitrifying bacterial isolates affiliated to Marinobacter spp. and Paracoccus spp. were isolated. Up regulation of the denitrification genes of strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to the Stappia spp. were metabolically active in the biofilm cultures. CONCLUSIONS These results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes of M. nitratireducenticrescens strain GP59 and H. nitrativorans strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm. Other denitrifying heterotrophic bacteria are present in low proportions, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | - Geneviève Payette
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | | | | | | |
Collapse
|
6
|
Payette G, Geoffroy V, Martineau C, Villemur R. Dynamics of a methanol-fed marine denitrifying biofilm: 1-Impact of environmental changes on the denitrification and the co-occurrence of Methylophaga nitratireducenticrescens and Hyphomicrobium nitrativorans. PeerJ 2019; 7:e7497. [PMID: 31423363 PMCID: PMC6697038 DOI: 10.7717/peerj.7497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The biofilm of a methanol-fed denitrification system that treated a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans strain NL23 and Methylophaga nitratireducenticrescens strain JAM1 are the principal bacteria involved in the denitrifying activities. Here, we report the capacity of the denitrifying biofilm to sustain environmental changes, and the impact of these changes on the co-occurrence of H. nitrativorans and M. nitratireducenticrescens. METHODS In a first set of assays, the original biofilm (OB) was cultivated in an artificial seawater (ASW) medium under anoxic conditions to colonize new carriers. The new formed biofilm was then subjected to short exposures (1-5 days) of a range of NaCl, methanol, nitrate (NO3 -) and nitrite (NO2 -) concentrations, and to different pHs and temperatures. In a second set of assays, the OB was cultivated in ASW medium for five weeks with (i) a range of NaCl concentrations, (ii) four combinations of NO3 -/methanol concentrations and temperatures, (iii) NO2 -, and (iv) under oxic conditions. Finally, the OB was cultivated for five weeks in the commercial Instant Ocean (IO) seawater. The growth of the biofilm and the dynamics of NO3 - and NO2 - were determined. The levels of M. nitratireducenticrescens and H. nitrativorans were measured by qPCR. RESULTS In the first set of assays, the biofilm cultures had the capacity to sustain denitrifying activities in most of the tested conditions. Inhibition occurred when they were exposed to high pH (10) or to high methanol concentration (1.5%). In the second set of assays, the highest specific denitrification rates occurred with the biofilm cultures cultivated at 64.3 mM NO3 - and 0.45% methanol, and at 30 °C. Poor biofilm development occurred with the biofilm cultures cultivated at 5% and 8% NaCl. In all biofilm cultures cultivated in ASW at 2.75% NaCl, H. nitrativorans strain NL23 decreased by three orders of magnitude in concentrations compared to that found in OB. This decrease coincided with the increase of the same magnitude of a subpopulation of M. nitratireducenticrescens (strain GP59 as representative). In the biofilm cultures cultivated at low NaCl concentrations (0% to 1.0%), persistence of H. nitrativorans strain NL23 was observed, with the gradual increase in concentrations of M. nitratireducenticrescens strain GP59. High levels of H. nitrativorans strain NL23 were found in the IO biofilm cultures. The concentrations of M. nitratireducenticrescens strain JAM1 were lower in most of the biofilms cultures than in OB. CONCLUSIONS These results demonstrate the plasticity of the marine methylotrophic denitrifying biofilm in adapting to different environmental changes. The NaCl concentration is a crucial factor in the dynamics of H. nitrativorans strain NL23, for which growth was impaired above 1% NaCl in the ASW-based biofilm cultures in favor of M. nitratireducenticrescens strain GP59.
Collapse
Affiliation(s)
- Geneviève Payette
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | | | | | - Richard Villemur
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
7
|
Carreira C, Mestre O, Nunes RF, Moura I, Pauleta SR. Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes. PeerJ 2018; 6:e5603. [PMID: 30258713 PMCID: PMC6152468 DOI: 10.7717/peerj.5603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Denitrification is one of the main pathways of the N-cycle, during which nitrate is converted to dinitrogen gas, in four consecutive reactions that are each catalyzed by a different metalloenzyme. One of the intermediate metabolites is nitrous oxide, which has a global warming impact greater then carbon dioxide and which atmospheric concentration has been increasing in the last years. The four denitrification enzymes have been isolated and biochemically characterized from Marinobacter hydrocarbonoclasticus in our lab. Methods Bioinformatic analysis of the M. hydrocarbonoclasticus genome to identify the genes involved in the denitrification pathway. The relative gene expression of the gene encoding the catalytic subunits of those enzymes was analyzed during the growth under microoxic conditions. The consumption of nitrate and nitrite, and the reduction of nitric oxide and nitrous oxide by whole-cells was monitored during anoxic and microoxic growth in the presence of 10 mM sodium nitrate at pH 7.5. Results The bioinformatic analysis shows that genes encoding the enzymes and accessory factors required for each step of the denitrification pathway are clustered together. An unusual feature is the co-existence of genes encoding a q- and a c-type nitric oxide reductase, with only the latter being transcribed at similar levels as the ones encoding the catalytic subunits of the other denitrifying enzymes, when cells are grown in the presence of nitrate under microoxic conditions. Using either a batch- or a closed system, nitrate is completely consumed in the beginning of the growth, with transient formation of nitrite, and whole-cells can reduce nitric oxide and nitrous oxide from mid-exponential phase until being collected (time-point 50 h). Discussion M. hydrocarbonoclasticus cells can reduce nitric and nitrous oxide in vivo, indicating that the four denitrification steps are active. Gene expression profile together with promoter regions analysis indicates the involvement of a cascade regulatory mechanism triggered by FNR-type in response to low oxygen tension, with nitric oxide and nitrate as secondary effectors, through DNR and NarXL, respectively. This global characterization of the denitrification pathway of a strict marine bacterium, contributes to the understanding of the N-cycle and nitrous oxide release in marine environments.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
8
|
Geoffroy V, Payette G, Mauffrey F, Lestin L, Constant P, Villemur R. Strain-level genetic diversity of Methylophaga nitratireducenticrescens confers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm. PeerJ 2018; 6:e4679. [PMID: 29707436 PMCID: PMC5918138 DOI: 10.7717/peerj.4679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Background The biofilm of a methanol-fed, fluidized denitrification system treating a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans NL23 and Methylophaga nitratireducenticrescens JAM1 are the principal bacteria involved in the denitrifying activities. Strain NL23 can carry complete nitrate (NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−) reduction to N2, whereas strain JAM1 can perform 3 out of the 4 reduction steps. A small proportion of other denitrifiers exists in the biofilm, suggesting the potential plasticity of the biofilm in adapting to environmental changes. Here, we report the acclimation of the denitrifying biofilm from continuous operating mode to batch operating mode, and the isolation and characterization from the acclimated biofilm of a new denitrifying bacterial strain, named GP59. Methods The denitrifying biofilm was batch-cultured under anoxic conditions. The acclimated biofilm was plated on Methylophaga specific medium to isolate denitrifying Methylophaga isolates. Planktonic cultures of strains GP59 and JAM1 were performed, and the growth and the dynamics of NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−, nitrite (NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{2}^{-}$\end{document}2−) and N2O were determined. The genomes of strains GP59 and JAM1 were sequenced and compared. The transcriptomes of strains GP59 and JAM1 were derived from anoxic cultures. Results During batch cultures of the biofilm, we observed the disappearance of H. nitrativorans NL23 without affecting the denitrification performance. From the acclimated biofilm, we isolated strain GP59 that can perform, like H. nitrativorans NL23, the complete denitrification pathway. The GP59 cell concentration in the acclimated biofilm was 2–3 orders of magnitude higher than M. nitratireducenticrescens JAM1 and H. nitrativorans NL23. Genome analyses revealed that strain GP59 belongs to the species M. nitratireducenticrescens. The GP59 genome shares more than 85% of its coding sequences with those of strain JAM1. Based on transcriptomic analyses of anoxic cultures, most of these common genes in strain GP59 were expressed at similar level than their counterparts in strain JAM1. In contrast to strain JAM1, strain GP59 cannot reduce NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3− under oxic culture conditions, and has a 24-h lag time before growth and NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3− reduction start to occur in anoxic cultures, suggesting that both strains regulate differently the expression of their denitrification genes. Strain GP59 has the ability to reduce NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{2}^{-}$\end{document}2− as it carries a gene encoding a NirK-type NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{2}^{-}$\end{document}2− reductase. Based on the CRISPR sequences, strain GP59 did not emerge from strain JAM1 during the biofilm batch cultures but rather was present in the original biofilm and was enriched during this process. Discussion These results reinforce the unique trait of the species M. nitratireducenticrescens among the Methylophaga genus as facultative anaerobic bacterium. These findings also showed the plasticity of denitrifying population of the biofilm in adapting to anoxic marine environments of the bioreactor.
Collapse
Affiliation(s)
- Valérie Geoffroy
- Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada.,Lallemand, Montreal, Québec, Canada
| | - Geneviève Payette
- Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Florian Mauffrey
- Laboratoire de santé publique du Québec, Ste-Anne-de-Bellevue, Québec, Canada
| | - Livie Lestin
- Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Philippe Constant
- Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Richard Villemur
- Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
9
|
Mauffrey F, Cucaita A, Constant P, Villemur R. Denitrifying metabolism of the methylotrophic marine bacterium Methylophaga nitratireducenticrescens strain JAM1. PeerJ 2017; 5:e4098. [PMID: 29201569 PMCID: PMC5710167 DOI: 10.7717/peerj.4098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Methylophaga nitratireducenticrescens strain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate ([Formula: see text]) to nitrite ([Formula: see text]). These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar). Strain JAM1 also contains gene clusters encoding two nitric oxide (NO) reductases and one nitrous oxide (N2O) reductase, suggesting that NO and N2O can be reduced by strain JAM1. Here we characterized further the denitrifying activities of M. nitratireducenticrescens JAM1. METHODS Series of oxic and anoxic cultures of strain JAM1 were performed with N2O, [Formula: see text] or sodium nitroprusside, and growth and N2O, [Formula: see text], [Formula: see text] and N2 concentrations were measured. Ammonium ([Formula: see text])-free cultures were also tested to assess the dynamics of N2O, [Formula: see text] and [Formula: see text]. Isotopic labeling of N2O was performed in 15NH4+-amended cultures. Cultures with the JAM1ΔnarG1narG2 double mutant were performed to assess the involvement of the Nar systems on N2O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochrome bc-type nitric oxide reductase (cnorB1 and cnorB2) and nitrous oxide reductase (nosZ), and also nnrS and norR that encode NO-sensitive regulators. RESULTS Strain JAM1 can reduce NO to N2O and N2O to N2 and can sustain growth under anoxic conditions by reducing N2O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory [Formula: see text] reductase, [Formula: see text]-amended cultures produce N2O, representing up to 6% of the N-input. [Formula: see text] was shown to be the key intermediate of this production process. Upregulation in the expression of cnorB1, cnorB2, nnrS and norR during the growth and the N2O accumulation phases suggests NO production in strain JAM1 cultures. DISCUSSION By showing that all the three denitrification reductases are active, this demonstrates that M. nitratireducenticrescens JAM1 is one of many bacteria species that maintain genes associated primarily with denitrification, but not necessarily related to the maintenance of the entire pathway. The reason to maintain such an incomplete pathway could be related to the specific role of strain JAM1 in the denitrifying biofilm of the denitrification reactor from which it originates. The production of N2O in strain JAM1 did not involve Nar, contrary to what was demonstrated in Escherichia coli. M. nitratireducenticrescens JAM1 is the only reported Methylophaga species that has the capacity to grow under anoxic conditions by using [Formula: see text] and N2O as sole electron acceptors for its growth. It is also one of a few marine methylotrophs that is studied at the physiological and genetic levels in relation to its capacity to perform denitrifying activities.
Collapse
Affiliation(s)
- Florian Mauffrey
- INRS–Institut Armand-Frappier, Laval, Québec, Canada
- Laboratoire de santé publique du Québec, Ste-Anne-de-Bellevue, Québec, Canada
| | | | | | | |
Collapse
|