1
|
Li J, Lu T, Chu Y, Zhang Y, Zhang J, Fu W, Sun J, Liu Y, Liao X, Zhou Y. Cinnamaldehyde targets SarA to enhance β-lactam antibiotic activity against methicillin-resistant Staphylococcus aureus. MLIFE 2024; 3:291-306. [PMID: 38948140 PMCID: PMC11211666 DOI: 10.1002/mlf2.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 07/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and β-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to β-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on β-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with β-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to β-lactams. Furthermore, CIN fully restored the anti-MRSA activities of β-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a β-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.
Collapse
Affiliation(s)
- Jianguo Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Tingyin Lu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuefei Chu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuejun Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Yantai Fushan Center for Animal Disease Control and PreventionYantaiChina
| | - Wenzhen Fu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yu‐Feng Zhou
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Alumutairi L, Yu B, Filka M, Nayfach J, Kim MH. Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics. Int J Hyperthermia 2020; 37:66-75. [PMID: 31964196 PMCID: PMC7730973 DOI: 10.1080/02656736.2019.1707886] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: A critical challenge in the treatment of biofilm infection is the capacity of biofilm-grown bacteria to develop resistance to traditional antimicrobial therapies. The objective of this study was to validate the therapeutic potential of magnetic nanoparticle/alternating magnetic field (MNP/AMF) hyperthermia in combination with conventional antibiotics against biofilm infection. Materials and methods: The impact of MNP/AMF hyperthermia on the viability of S. aureus biofilm in the absence and presence of antibiotics as well as on the bactericidal activity of macrophages were evaluated at varying conditions of MNPs concentration and AMF intensity using in vitro cell culture models. Results: The application of MNP/AMF alone at a CEM43 thermal dose below the threshold for skin tissue exhibited a modest efficacy in the eradication of Staphylococcus aureus (S. aureus) biofilm (<1-log reduction). The treatment of antibiotics (ciprofloxacin, vancomycin) alone at a bactericidal concentration for planktonic S. aureus had no significant effect on the eradication of biofilm phase of S. aureus. However, when the biofilm was pre-exposed to mild MNP/AMF hyperthermia, the treatment of antibiotics could exhibit bactericidal effects against S. aureus biofilm, which was associated with increased uptake of antibiotics to the bacterial cells. Importantly, the application of MNP/AMF could promote the bactericidal activity of macrophages against intracellular bacteria via MNP-dependent generation of reactive oxygen species (ROS). Conclusion: Our results validate that the application of mild MNP/AMF hyperthermia within a safe thermal dose threshold is synergistic with conventional antibiotics as well as aids host innate immune response of macrophages for the clearance of intracellular bacteria.
Collapse
Affiliation(s)
- Layla Alumutairi
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biology, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Mitchell Filka
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | | | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
3
|
Luo W, Chen D, Wu M, Li Z, Tao Y, Liu Q, Pan Y, Qu W, Yuan Z, Xie S. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. J Vet Sci 2020; 20:e40. [PMID: 31565887 PMCID: PMC6769327 DOI: 10.4142/jvs.2019.20.e40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
Misuse and abuse of veterinary antimicrobial agents have led to an alarming increase in bacterial resistance, clinical treatment failure, and drug residues. To address these problems, consistent and appropriate dosage regimens for veterinary antimicrobial agents are needed. Pharmacokinetics/Pharmacodynamics (PK/PD) models have been widely used to establish rational dosage regimens for veterinary antimicrobial agents that can achieve effective prevention and treatment of bacterial diseases and avoid the development of bacterial resistance. This review introduces building methods for PK/PD models and describes current PK/PD research progress toward rational dosage regimens for veterinary antimicrobial agents. Finally, the challenges and prospects of PK/PD models in the design of dosage regimens for veterinary antimicrobial agents are reviewed. This review will help to increase awareness of PK/PD modeling among veterinarians and hopefully promote its development and future use.
Collapse
Affiliation(s)
- Wanhe Luo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengru Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenxia Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Shantier SW. Review on the Characteristic, Properties and Analytical Methods of Cefquinomesulphate: ß-lactam Veterinary Drug. Infect Disord Drug Targets 2020; 20:27-32. [PMID: 30277168 DOI: 10.2174/1871526518666181001122010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Chemotherapy as a science began within the 1st decade of the twentieth century with understanding of the principles of selective toxicity, the particular chemical relationships between microorganism pathogens and medicines, the event of drug resistance, and also the role of combined medical aid. OBJECTIVES This review aims to highlight the characteristics, specifically the pharmacokinetic parameters and the analytical methods reported in literature for the determination of Cefquinome, a fourth generation cephalosporine used to treat Gram-positive and Gram-negative caused infections. CONCLUSION Analysis of such drugs, whether used for the treatment of human or animal illness, is essential in understanding the bioavailability and therapeutic control which will ensure their activity and safety.
Collapse
|
5
|
Coenye T, Kjellerup B, Stoodley P, Bjarnsholt T. The future of biofilm research - Report on the '2019 Biofilm Bash'. Biofilm 2019; 2:100012. [PMID: 33447799 PMCID: PMC7798458 DOI: 10.1016/j.bioflm.2019.100012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
In May 2019, 29 scientists with expertise in various subdisciplines of biofilm research got together in Leavenworth (WA, USA) at an event designated as the ‘2019 Biofilm Bash’. The goal of this informal two-day meeting was first to identify gaps in our knowledge, and then to come up with ways how the biofilm community can fill these gaps. The meeting was organized around six questions that covered the most important items brought forward by the organizers and participants. The outcome of these discussions is summarized in the present paper. We are aware that these views represent a small subset of our field, and that inevitably we will have inadvertently overlooked important developing research areas and ideas. We are nevertheless hopeful that this report will stimulate discussions and help create new ways of how we can advance our field.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.,ESCMID Study Group on Biofilms, Basel, Switzerland
| | - Birthe Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA.,National Biofilms Innovation Centre (NBIC), UK.,National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, UK
| | - Thomas Bjarnsholt
- ESCMID Study Group on Biofilms, Basel, Switzerland.,Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Rudilla H, Merlos A, Sans-Serramitjana E, Fusté E, Sierra JM, Zalacaín A, Vinuesa T, Viñas M. New and old tools to evaluate new antimicrobial peptides. AIMS Microbiol 2018; 4:522-540. [PMID: 31294231 PMCID: PMC6604946 DOI: 10.3934/microbiol.2018.3.522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
The emergence of antimicrobial resistance due to the overuse of antimicrobials together with the existence of naturally untreatable infections well demonstrates the need for new instruments to fight microbes. Antimicrobial peptides (AMPs) are a promising family of molecules in this regard, because they abundantly occur in nature and the results of preliminary studies of their clinical potential have been encouraging. However, further progress will benefit from the standardization of research methods to assess the antimicrobial properties of AMPs. Here we review the diverse methods used to study the antimicrobial power of AMPs and recommend a pathway to explore new molecules. The use of new methodologies to quantitatively evaluate the physical effect on bacterial biofilms such as force spectroscopy and surface cell damage evaluation, constitute novel approaches to study new AMPs.
Collapse
Affiliation(s)
- Hector Rudilla
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Alexandra Merlos
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Eulàlia Sans-Serramitjana
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Ester Fusté
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Josep M Sierra
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Antonio Zalacaín
- Department of Clinical Sciences, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Teresa Vinuesa
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| | - Miguel Viñas
- Department of Pathology & Experimental therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, Feixa Llarga s/n 08907 Hospitalet, Barcelona, Spain
| |
Collapse
|
7
|
Lyu Y, Yang Y, Li X, Peng M, He X, Zhang P, Dong S, Wang W, Wang D. Selection of piperacillin/tazobactam infusion mode guided by SOFA score in cancer patients with hospital-acquired pneumonia: a randomized controlled study. Ther Clin Risk Manag 2017; 14:31-37. [PMID: 29317824 PMCID: PMC5743125 DOI: 10.2147/tcrm.s145681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background This study aimed to select piperacillin/tazobactam (TZP) infusion mode guided by Sequential Organ Failure Assessment (SOFA) score in cancer patients with hospital-acquired pneumonia (HAP) postoperation. Patients and methods A total of 120 cancer patients with postoperative HAP were divided into two groups: improved administration group (L group) and conventional treatment group (Con group). The Con group received traditional infusion of TZP and the L group received it as prolonged infusion. Blood drug concentration was detected at different time points. Based on the SOFA cut-off value of 9, the patients were regrouped into M (mild) and S (severe) groups. Results Percent time that the free drug concentrations remain above the minimum inhibitory concentration (%fT>MIC) was longer than 5 h in L group, but <4 h in Con group. Administration method (p=0.033, OX value 2.796, B value 1.028, 95% CI: 0.855-8.934) and SOFA score (p=0.038, OX value 0.080, B value -2.522, 95% CI: 0.007-0.874) were independent predictors of patient survival. In the S group, compared to conventional treatment, prolonged infusion mode resulted in shorter days of antibiotic use and shorter ventilator time, and achieved longer survival, better clinical efficacy, and lower 28-day mortality rate. Conclusion For cancer patients with SOFA score ≥9, prolonged infusion of TZP could benefit the patients and obtain better clinical efficacy.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Yang Yang
- Department of Anesthesia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Xin Li
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin
| | - Min Peng
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin
| | - Xin He
- Department of Anesthesia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangwen Dong
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanhua Wang
- Department of Anesthesia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Donghao Wang
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| |
Collapse
|