1
|
Gibson K, Chu JK, Zhu S, Nguyen D, Mrázek J, Liu J, Hoover TR. A Tripartite Efflux System Affects Flagellum Stability in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms231911609. [PMID: 36232924 PMCID: PMC9570263 DOI: 10.3390/ijms231911609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Helicobacter pylori uses a cluster of polar, sheathed flagella for swimming motility. A search for homologs of H. pylori proteins that were conserved in Helicobacter species that possess flagellar sheaths but were underrepresented in Helicobacter species with unsheathed flagella identified several candidate proteins. Four of the identified proteins are predicted to form part of a tripartite efflux system that includes two transmembrane domains of an ABC transporter (HP1487 and HP1486), a periplasmic membrane fusion protein (HP1488), and a TolC-like outer membrane efflux protein (HP1489). Deleting hp1486/hp1487 and hp1489 homologs in H. pylori B128 resulted in reductions in motility and the number of flagella per cell. Cryo-electron tomography studies of intact motors of the Δhp1489 and Δhp1486/hp1487 mutants revealed many of the cells contained a potential flagellum disassembly product consisting of decorated L and P rings, which has been reported in other bacteria. Aberrant motors lacking specific components, including a cage-like structure that surrounds the motor, were also observed in the Δhp1489 mutant. These findings suggest a role for the H. pylori HP1486-HP1489 tripartite efflux system in flagellum stability. Three independent variants of the Δhp1486/hp1487 mutant with enhanced motility were isolated. All three motile variants had the same frameshift mutation in fliL, suggesting a role for FliL in flagellum disassembly.
Collapse
Affiliation(s)
- Katherine Gibson
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Joshua K. Chu
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Shiwei Zhu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Doreen Nguyen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Jan Mrázek
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
2
|
Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses. J Microbiol 2022; 60:832-842. [DOI: 10.1007/s12275-022-2059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
3
|
Shen Z, Mannion A, Lin M, Esmail M, Bakthavatchalu V, Yang S, Ho C, Feng Y, Smith B, Elliott J, Gresham V, VandeBerg JL, Samollow PB, Fox JG. Helicobacter monodelphidis sp. nov. and Helicobacter didelphidarum sp. nov., isolated from grey short-tailed opossums ( Monodelphis domestica) with endemic cloacal prolapses. Int J Syst Evol Microbiol 2021; 70:6032-6043. [PMID: 33079029 DOI: 10.1099/ijsem.0.004424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In a search for potential causes of increased prolapse incidence in grey short-tailed opossum colonies, samples from the gastrointestinal tracts of 94 clinically normal opossums with rectal prolapses were screened for Helicobacter species by culture and PCR. Forty strains of two novel Helicobacter species which differed from the established Helicobacter taxa were isolated from opossums with and without prolapses. One of the Helicobacter species was spiral-shaped and urease-negative whereas the other Helicobacter strain had fusiform morphology with periplasmic fibres and was urease-positive. 16S rRNA gene sequence analysis revealed that all the isolates had over 99 % sequence identity with each other, and were most closely related to Helicobacter canadensis. Strains from the two novel Helicobacter species were subjected to gyrB and hsp60 gene and whole genome sequence analyses. These two novel Helicobacter species formed separate phylogenetic clades, divergent from other known Helicobacter species. The bacteria were confirmed as novel Helicobacter species based on digital DNA-DNA hybridization and average nucleotide identity analysis of their genomes, for which we propose the names Helicobacter monodelphidis sp. nov. with the type strain MIT 15-1451T (=LMG 29780T=NCTC 14189T) and Helicobacter didelphidarum sp. nov with type strain MIT 17-337T (=LMG 31024T=NCTC 14188T).
Collapse
Affiliation(s)
- Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maggie Lin
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Michael Esmail
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Stephanie Yang
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Calvin Ho
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Briony Smith
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - James Elliott
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Vince Gresham
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - John L VandeBerg
- South Texas Diabetes & Obesity Institute, School of Medicine, The University of Texas, Rio Grande Valley, TX, USA
| | - Paul B Samollow
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Xia W, Khan I, Li XA, Huang G, Yu Z, Leong WK, Han R, Ho LT, Wendy Hsiao WL. Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers, strengthening the epithelial tight junction complex and immune responses. Pharmacol Res 2020; 159:104809. [PMID: 32502642 DOI: 10.1016/j.phrs.2020.104809] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Microbiome therapy has attracted a keen interest from both research and business sectors. Our lab has been applying this "second genome" platform to assess the functionality of herbal medicines with fulfilling results. In this study, we applied this platform to assess the potential cancer-preventive effects of three selected adaptogenic plants. The flower buds from these plants were used to constitute Preparations SL and FSP according to the receipts of two commonly consumed Chinese medicinal decoctions for gastrointestinal discomfort. Preparation SL contains Sophorae japonica and Lonicerae Japonicae, and Preparation FSP contains Sophorae japonica and Gardenia Jasminoides. SL and FSP extracts significantly (p < 0.001) lowered the polyp burden, as well as the expressions of oncogenic signaling molecules, such as MAPK/ERK, PI3K/AKT, and STAT3 in ApcMin/+ mice. The inflamed gut was alleviated by shifting M1 to M2 macrophage phenotypes and the associated immune cytokines. The other remarkable change was on the extracellular tight junction protein complex, where the occludin, ZO-1, ICAM-1, E-cadherin were significantly (p < 0.05) upregulated while the N-cadherin and β-catenin were downregulated in the treated mice. The above physiological changes in the gut epithelial barrier were companied with the changes in gut microbiome. The 16S Sequencing data revealed a marked decrease in the potential pathogens (especially Helicobacter species and hydrogen sulfide producing-bacteria) and the increase in beneficial bacteria (especially for species from the genera of Akkermansia, Barnesiella, Coprococcus, Lachnoclostridium, and Ruminococcus). The majority of which were the short-chain fatty acids (SCFAs) producers. Meanwhile SCFAs-sensing G protein-coupled receptors (GPCRs), including GPR41, GPR43, and GPR109a were also significantly upregulated. In a recent report, we proved that the bacteria-derived SCFAs plays an essential role to the anti-cancer effects of the mushroom polysaccharides and saponins in ApcMin/+ mice. In this study, we further demonstrated that butyrate treatment could enhance the extracellular tight junction protein complex as effective as the treatments with SL and FSP to the ApcMin/+ mice. Our findings provide strong evidence of the vital role of the SCFA-producers and their metabolites to the cancer-preventive properties of the SL and FSP preparations.
Collapse
Affiliation(s)
- Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Xiao-Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Zhiling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Leung Tsun Ho
- Department of Pathology, University Hospital, Macau University of Science and Technology, Macau.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
5
|
Dichotomous regulation of group 3 innate lymphoid cells by nongastric Helicobacter species. Proc Natl Acad Sci U S A 2019; 116:24760-24769. [PMID: 31740609 DOI: 10.1073/pnas.1908128116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intestinal innate lymphoid cells (ILCs) contribute to the protective immunity and homeostasis of the gut, and the microbiota are critically involved in shaping ILC function. However, the role of the gut microbiota in regulating ILC development and maintenance still remains elusive. Here, we identified opposing effects on ILCs by two Helicobacter species, Helicobacter apodemus and Helicobacter typhlonius, isolated from immunocompromised mice. We demonstrated that the introduction of both Helicobacter species activated ILCs and induced gut inflammation; however, these Helicobacter species negatively regulated RORγt+ group 3 ILCs (ILC3s), especially T-bet+ ILC3s, and diminished their proliferative capacity. Thus, these findings underscore a previously unknown dichotomous regulation of ILC3s by Helicobacter species, and may serve as a model for further investigations to elucidate the host-microbe interactions that critically sustain the maintenance of intestinal ILC3s.
Collapse
|
6
|
Comparative Genomics of H. pylori and Non-Pylori Helicobacter Species to Identify New Regions Associated with Its Pathogenicity and Adaptability. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6106029. [PMID: 28078297 PMCID: PMC5203880 DOI: 10.1155/2016/6106029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/17/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023]
Abstract
The genus Helicobacter is a group of Gram-negative, helical-shaped pathogens consisting of at least 36 bacterial species. Helicobacter pylori (H. pylori), infecting more than 50% of the human population, is considered as the major cause of gastritis, peptic ulcer, and gastric cancer. However, the genetic underpinnings of H. pylori that are responsible for its large scale epidemic and gastrointestinal environment adaption within human beings remain unclear. Core-pan genome analysis was performed among 75 representative H. pylori and 24 non-pylori Helicobacter genomes. There were 1173 conserved protein families of H. pylori and 673 of all 99 Helicobacter genus strains. We found 79 genome unique regions, a total of 202,359bp, shared by at least 80% of the H. pylori but lacked in non-pylori Helicobacter species. The operons, genes, and sRNAs within the H. pylori unique regions were considered as potential ones associated with its pathogenicity and adaptability, and the relativity among them has been partially confirmed by functional annotation analysis. However, functions of at least 54 genes and 10 sRNAs were still unclear. Our analysis of protein-protein interaction showed that 30 genes within them may have the cooperation relationship.
Collapse
|