1
|
Ricci F, Leggat W, Pasella MM, Bridge T, Horowitz J, Girguis PR, Ainsworth T. Deep sea treasures - Insights from museum archives shed light on coral microbial diversity within deepest ocean ecosystems. Heliyon 2024; 10:e27513. [PMID: 38468949 PMCID: PMC10926130 DOI: 10.1016/j.heliyon.2024.e27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Deep sea benthic habitats are low productivity ecosystems that host an abundance of organisms within the Cnidaria phylum. The technical limitations and the high cost of deep sea surveys have made exploring deep sea environments and the biology of the organisms that inhabit them challenging. In spite of the widespread recognition of Cnidaria's environmental importance in these ecosystems, the microbial assemblage and its role in coral functioning have only been studied for a few deep water corals. Here, we explored the microbial diversity of deep sea corals by recovering nucleic acids from museum archive specimens. Firstly, we amplified and sequenced the V1-V3 regions of the 16S rRNA gene of these specimens, then we utilized the generated sequences to shed light on the microbial diversity associated with seven families of corals collected from depth in the Coral Sea (depth range 1309 to 2959 m) and Southern Ocean (depth range 1401 to 2071 m) benthic habitats. Surprisingly, Cyanobacteria sequences were consistently associated with six out of seven coral families from both sampling locations, suggesting that these bacteria are potentially ubiquitous members of the microbiome within these cold and deep sea water corals. Additionally, we show that Cnidaria might benefit from symbiotic associations with a range of chemosynthetic bacteria including nitrite, carbon monoxide and sulfur oxidizers. Consistent with previous studies, we show that sequences associated with the bacterial phyla Proteobacteria, Verrucomicrobia, Planctomycetes and Acidobacteriota dominated the microbial community of corals in the deep sea. We also explored genomes of the bacterial genus Mycoplasma, which we identified as associated with specimens of three deep sea coral families, finding evidence that these bacteria may aid the host immune system. Importantly our results show that museum specimens retain components of host microbiome that can provide new insights into the diversity of deep sea coral microbiomes (and potentially other organisms), as well as the diversity of microbes writ large in deep sea ecosystems.
Collapse
Affiliation(s)
- Francesco Ricci
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
- Monash University, Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - William Leggat
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, NSW, Australia
| | - Marisa M. Pasella
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
| | - Tom Bridge
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jeremy Horowitz
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Peter R. Girguis
- University of Harvard, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Tracy Ainsworth
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
| |
Collapse
|
2
|
Chan YF, Chen YH, Yu SP, Chen HJ, Nozawa Y, Tang SL. Reciprocal transplant experiment reveals multiple factors influencing changes in coral microbial communities across climate zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167929. [PMID: 37863230 DOI: 10.1016/j.scitotenv.2023.167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Previous studies have demonstrated the influence of external factors (environmental factors and the coral host factors) on the community structure of coral-associated bacteria. However, the internal factors, e.g. the interaction within the bacterial community or bacteria itself, have often been overlooked in studies of the coral microbiome. Hence, we performed a reciprocal transplant of corals between two different climate zones to examine the resultant alterations in coral-associated bacterial communities. The findings highlight the significance of environmental factors, host selection, and highly resilient bacteria in shaping the coral microbial composition. The results support that coral species consistently harbor specific predominant bacterial groups influenced by host selection, while locations display unique bacterial taxa due to environmental variations. The transplantation of corals into new environments leads to a gradual shift in the bacterial community, from initially resembling that of the native location to eventually resembling that of the transplanted location, emphasizing the crucial role of bacterial community composition for coral survival under changing ambient conditions. Furthermore, highly resilient bacteria that persisted throughout the reciprocal transplant experiment demonstrated their adaptability to environmental and host changes, suggesting the presence of robust adaptation or resistance mechanisms in bacterial communities. Genetic adaptations within the prevalent bacterial group, Endozoicomonas, were also observed, suggesting variations in resilience and adaptation capabilities among different phylotypes. This study highlights the need to conduct further investigations into the coral-associated bacteria themselves, as they may hold some key insights into understanding the dynamics of coral-associated microbial communities. These data also highlight some key species of coral-associated bacteria which could benefit coral in response to alterations in ambient environment.
Collapse
Affiliation(s)
- Ya-Fan Chan
- Department of Microbiology, Soochow University, Taipei 111, Taiwan
| | - Yu-Hsiang Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sheng-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Taiwan's Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
3
|
Montaño-Salazar S, Quintanilla E, Sánchez JA. Microbial shifts associated to ENSO-derived thermal anomalies reveal coral acclimation at holobiont level. Sci Rep 2023; 13:22049. [PMID: 38087002 PMCID: PMC10716379 DOI: 10.1038/s41598-023-49049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
The coral microbiome conforms a proxy to study effects of changing environmental conditions. However, scarce information exists regarding microbiome dynamics and host acclimation in response to environmental changes associated to global-scale disturbances. We assessed El Niño Southern Oscillation (ENSO)-derived thermal anomalies shifts in the bacterial microbiome of Pacifigorgia cairnsi (Gorgoniidae: Octocorallia) from the remote island of Malpelo in the Tropical Eastern Pacific. Malpelo is a hot spot of biodiversity and lacks direct coastal anthropogenic impacts. We evaluated the community composition and predicted functional profiles of the microbiome during 2015, 2017 and 2018, including different phases of ENSO cycle. The bacterial community diversity and composition between the warming and cooling phase were similar, but differed from the neutral phase. Relative abundances of different microbiome core members such as Endozoicomonas and Mycoplasma mainly drove these differences. An acclimated coral holobiont is suggested not just to warm but also to cold stress by embracing similar microbiome shifts and functional redundancy that allow maintaining coral's viability under thermal stress. Responses of the microbiome of unperturbed sea fans such as P. cairnsi in Malpelo could be acting as an extended phenotype facilitating the acclimation at the holobiont level.
Collapse
Affiliation(s)
- Sandra Montaño-Salazar
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Elena Quintanilla
- Department of Soil and Water Sciences, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Juan A Sánchez
- Laboratory of Marine Molecular Biology (BIOMMAR), Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
4
|
Monti M, Giorgi A, Kemp DW, Olson JB. Spatial, temporal and network analyses provide insights into the dynamics of the bacterial communities associated with two species of Caribbean octocorals and indicate possible key taxa. Symbiosis 2023; 90:1-14. [PMID: 37360551 PMCID: PMC10238251 DOI: 10.1007/s13199-023-00923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Despite the current decline of scleractinian coral populations, octocorals are thriving on reefs in the Caribbean Sea and western North Atlantic Ocean. These cnidarians are holobiont entities, interacting with a diverse array of microorganisms. Few studies have investigated the spatial and temporal stability of the bacterial communities associated with octocoral species and information regarding the co-occurrence and potential interactions between specific members of these bacterial communities remain sparse. To address this knowledge gap, this study investigated the stability of the bacterial assemblages associated with two common Caribbean octocoral species, Eunicea flexuosa and Antillogorgia americana, across time and geographical locations and performed network analyses to investigate potential bacterial interactions. Results demonstrated that general inferences regarding the spatial and temporal stability of octocoral-associated bacterial communities should not be made, as host-specific characteristics may influence these factors. In addition, network analyses revealed differences in the complexity of the interactions between bacteria among the octocoral species analyzed, while highlighting the presence of genera known to produce bioactive secondary metabolites in both octocorals that may play fundamental roles in structuring the octocoral-associated bacteriome. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-023-00923-x.
Collapse
Affiliation(s)
- M. Monti
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - A. Giorgi
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - D. W. Kemp
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - J. B. Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| |
Collapse
|
5
|
Zhu W, Liu X, Zhang J, Zhao H, Li Z, Wang H, Chen R, Wang A, Li X. Response of coral bacterial composition and function to water quality variations under anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163837. [PMID: 37137368 DOI: 10.1016/j.scitotenv.2023.163837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Microbial communities play key roles in the adaptation of corals living in adverse environments, as the microbiome flexibility can enhance environmental plasticity of coral holobiont. However, the ecological association of coral microbiome and related function to locally deteriorating water quality remains underexplored. In this work, we used 16S rRNA gene sequencing and quantitative microbial element cycling (QMEC) to investigate the seasonal changes of bacterial communities, particularly their functional genes related to carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycle, of the scleractinian coral Galaxea fascicularis from nearshore reefs exposed anthropogenic influence. We used nutrient concentrations as the indicator of anthropogenic activities in coastal reefs, and found a higher nutrient pressure in spring than summer. The bacterial diversity, community structure and dominant bacteria of coral shifted significantly due to seasonal variations dominated by nutrient concentrations. Additionally, the network structure and nutrient cycling gene profiles in summer under low nutrient stress was distinct from that under poor environmental conditions in spring, with lower network complexity and abundance of CNPS cycling genes in summer compared with spring. We further identified significant correlations between microbial community (taxonomic composition and co-occurrence network) and geochemical functions (abundance of multiple functional genes and functional community). Nutrient enrichment was proved to be the most important environmental fluctuation in controlling the diversity, community structure, interactional network and functional genes of the coral microbiome. These results highlight that seasonal shifts in coral-associated bacteria due to anthropogenic activities alter the functional potentials, and provide novel insight about the mechanisms of coral adaptation to locally deteriorating environments.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Junling Zhang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - He Zhao
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhuoran Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
6
|
Lo Giudice A, Rizzo C. Bacteria Associated with Benthic Invertebrates from Extreme Marine Environments: Promising but Underexplored Sources of Biotechnologically Relevant Molecules. Mar Drugs 2022; 20:617. [PMID: 36286440 PMCID: PMC9605250 DOI: 10.3390/md20100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Microbe-invertebrate associations, commonly occurring in nature, play a fundamental role in the life of symbionts, even in hostile habitats, assuming a key importance for both ecological and evolutionary studies and relevance in biotechnology. Extreme environments have emerged as a new frontier in natural product chemistry in the search for novel chemotypes of microbial origin with significant biological activities. However, to date, the main focus has been microbes from sediment and seawater, whereas those associated with biota have received significantly less attention. This review has been therefore conceived to summarize the main information on invertebrate-bacteria associations that are established in extreme marine environments. After a brief overview of currently known extreme marine environments and their main characteristics, a report on the associations between extremophilic microorganisms and macrobenthic organisms in such hostile habitats is provided. The second part of the review deals with biotechnologically relevant bioactive molecules involved in establishing and maintaining symbiotic associations.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| |
Collapse
|
7
|
Williams SD, Klinges JG, Zinman S, Clark AS, Bartels E, Villoch Diaz Maurino M, Muller EM. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida's Coral Reef. PeerJ 2022; 10:e13574. [PMID: 35729906 PMCID: PMC9206844 DOI: 10.7717/peerj.13574] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.
Collapse
Affiliation(s)
| | - J. Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Samara Zinman
- Nova Southeastern University, Dania Beach, FL, United States of America
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America,The College of the Florida Keys, Key West, FL, United States of America
| | - Erich Bartels
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Marina Villoch Diaz Maurino
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Erinn M. Muller
- Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|
8
|
Ricci F, Tandon K, Black JR, Lê Cao KA, Blackall LL, Verbruggen H. Host Traits and Phylogeny Contribute to Shaping Coral-Bacterial Symbioses. mSystems 2022; 7:e0004422. [PMID: 35253476 PMCID: PMC9045482 DOI: 10.1128/msystems.00044-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
The success of tropical scleractinian corals depends on their ability to establish symbioses with microbial partners. Host phylogeny and traits are known to shape the coral microbiome, but to what extent they affect its composition remains unclear. Here, by using 12 coral species representing the complex and robust clades, we explored the influence of host phylogeny, skeletal architecture, and reproductive mode on the microbiome composition, and further investigated the structure of the tissue and skeleton bacterial communities. Our results show that host phylogeny and traits explained 14% of the tissue and 13% of the skeletal microbiome composition, providing evidence that these predictors contributed to shaping the holobiont in terms of presence and relative abundance of bacterial symbionts. Based on our data, we conclude that host phylogeny affects the presence of specific microbial lineages, reproductive mode predictably influences the microbiome composition, and skeletal architecture works like a filter that affects bacterial relative abundance. We show that the β-diversity of coral tissue and skeleton microbiomes differed, but we found that a large overlapping fraction of bacterial sequences were recovered from both anatomical compartments, supporting the hypothesis that the skeleton can function as a microbial reservoir. Additionally, our analysis of the microbiome structure shows that 99.6% of tissue and 99.7% of skeletal amplicon sequence variants (ASVs) were not consistently present in at least 30% of the samples, suggesting that the coral tissue and skeleton are dominated by rare bacteria. Together, these results provide novel insights into the processes driving coral-bacterial symbioses, along with an improved understanding of the scleractinian microbiome.
Collapse
Affiliation(s)
- Francesco Ricci
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Victoria, Australia
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jay R. Black
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
9
|
Quintanilla E, Rodrigues CF, Henriques I, Hilário A. Microbial Associations of Abyssal Gorgonians and Anemones (>4,000 m Depth) at the Clarion-Clipperton Fracture Zone. Front Microbiol 2022; 13:828469. [PMID: 35432234 PMCID: PMC9006452 DOI: 10.3389/fmicb.2022.828469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 01/04/2023] Open
Abstract
Deep coral-dominated communities play paramount roles in benthic environments by increasing their complexity and biodiversity. Coral-associated microbes are crucial to maintain fitness and homeostasis at the holobiont level. However, deep-sea coral biology and their associated microbiomes remain largely understudied, and less from remote and abyssal environments such as those in the Clarion-Clipperton Fracture Zone (CCZ) in the tropical Northeast (NE) Pacific Ocean. Here, we study microbial-associated communities of abyssal gorgonian corals and anemones (>4,000 m depth) in the CCZ; an area harboring the largest known global reserve of polymetallic nodules that are commercially interesting for the deep-sea nodule mining. Coral samples (n = 25) belonged to Isididae and Primnoidae families, while anemones (n = 4) to Actinostolidae family. Significant differences in bacterial community compositions were obtained between these three families, despite sharing similar habitats. Anemones harbored bacterial microbiomes composed mainly of Hyphomicrobiaceae, Parvibaculales, and Pelagibius members. Core microbiomes of corals were mainly dominated by different Spongiibacteraceae and Terasakiellaceae bacterial members, depending on corals' taxonomy. Moreover, the predicted functional profiling suggests that deep-sea corals harbor bacterial communities that allow obtaining additional energy due to the scarce availability of nutrients. This study presents the first report of microbiomes associated with abyssal gorgonians and anemones and will serve as baseline data and crucial insights to evaluate and provide guidance on the impacts of deep-sea mining on these key abyssal communities.
Collapse
Affiliation(s)
- Elena Quintanilla
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Clara F. Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Influence of temperature changes on symbiotic Symbiodiniaceae and bacterial communities’ structure: an experimental study on soft coral Sarcophyton trocheliophorum (Anthozoa: Alcyoniidae). JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractIt is well concluded that microbial composition and diversity of coral species can be affected under temperature alterations. However, the interaction of environmental accumulation of corals and temperature stress on symbiotic Symbiodiniaceae and bacterial communities are rarely studied. In this study, two groups of soft coral Sarcophyton trocheliophorum were cultured under constant (26 °C) and inconstant (22 °C to 26 °C) temperature conditions for 30 days as control treatments. After that, water was cooled rapidly to decrease to 20 °C in 24 h. The results of diversity analysis showed that symbiotic Symbiodiniaceae and bacterial communities had a significant difference between the two accumulated groups. The principal coordinate analyses confirmed that symbiotic Symbiodiniaceae and bacterial communities of both control treatments were clustered into two groups. Our results evidenced that rapid cooling stress could not change symbiotic Symbiodiniaceae and bacterial communities’ composition. On the other hand, cooling stress could alter only bacterial communities in constant group. In conclusion, our study represents a clear relationship between environmental accumulation and the impact of short-term cooling stress in which microbial composition structure can be affected by early adaptation conditions.
Collapse
|
11
|
Neu AT, Hughes IV, Allen EE, Roy K. Decade-scale stability and change in a marine bivalve microbiome. Mol Ecol 2021; 30:1237-1250. [PMID: 33432685 DOI: 10.1111/mec.15796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
Predicting how populations and communities of organisms will respond to anthropogenic change is of paramount concern in ecology today. For communities of microorganisms, however, these predictions remain challenging, primarily due to data limitations. Information about long-term dynamics of host-associated microbial communities, in particular, is lacking. In this study, we use well-preserved and freshly collected samples of soft tissue from a marine bivalve host, Donax gouldii, at a single site to quantify the diversity and composition of its microbiome over a decadal timescale. Site-level measurements of temperature, salinity and chlorophyll a allowed us to test how the microbiome of this species responded to two natural experiments: a seasonal increase in temperature and a phytoplankton bloom. Our results show that ethanol-preserved tissue can provide high-resolution information about temporal trends in compositions of host-associated microbial communities. Specifically, we found that the richness of amplicon sequence variants (ASVs) associated with D.gouldii did not change significantly over time despite increases in water temperature (+1.6°C due to seasonal change) and chlorophyll a concentration (more than ninefold). The phylogenetic composition of the communities, on the other hand, varied significantly between all collection years, with only six ASVs persisting over our sampling period. Overall, these results suggest that the diversity of microbial taxa associated with D.gouldii has remained stable over time and in response to seasonal environmental change over the course of more than a decade, but such stability is underlain by substantial turnover in the composition of the microbiome.
Collapse
Affiliation(s)
- Alexander T Neu
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ian V Hughes
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Eric E Allen
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Mohamed A, Zmuda HM, Ha PT, Coats ER, Beyenal H. Large-scale switchable potentiostatically controlled/microbial fuel cell bioelectrochemical wastewater treatment system. Bioelectrochemistry 2020; 138:107724. [PMID: 33485135 DOI: 10.1016/j.bioelechem.2020.107724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The treatment of municipal wastewater is an energy-intensive process, with the delivery of oxygen as an electron acceptor accounting for a significant share of the total energy consumption. Microbial communities growing on polarized electrodes can facilitate wastewater treatment processes by exchanging electrons with the electrodes. As a new approach, we combined the use of polarized electrodes with microbial fuel cells (MFCs) to develop a switchable dual-mode bioelectrochemical wastewater treatment system. In this system, we first enriched microbial communities on polarized anodes and cathodes. After enrichment, the system was switched to either a self-powered MFC (SP-MFC) mode or a potentiostatically controlled (PC) mode. The system was evaluated at the laboratory scale (260 L, 4 anode and cathode pairs) and the pilot scale (1200 L, 16 anode and cathode pairs). PC and SP-MFC systems showed improved COD removal relative to control (41.6 ± 3.5 and 38.4 ± 3.1 vs 28.8 ± 2.1 mg L-1 d-1, respectively). The laboratory-scale system was operated without biological or electrical interruption for one year. Finally, specific enrichment of active microbial communities was observed on PC anodes in comparison to mixed-operation and non-polarized control anodes. The combined PC and SP-MFC systems allowed us to develop a sustainable and failure-free bioelectrochemical wastewater treatment system.
Collapse
Affiliation(s)
- Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hannah M Zmuda
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Phuc T Ha
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
13
|
Louime CJ, Vazquez-Sanchez F, Derilus D, Godoy-Vitorino F. Divergent Microbiota Dynamics along the Coastal Marine Ecosystem of Puerto Rico. MICROBIOLOGY RESEARCH 2020; 11:45-55. [PMID: 39175946 PMCID: PMC11340205 DOI: 10.3390/microbiolres11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Understanding the different factors shaping the spatial and temporal distribution of marine microorganisms is fundamental in predicting their responses to future environmental disturbances. There has been, however, little effort to characterize the microbial diversity including the microbiome dynamics among regions in the Caribbean Sea. Toward this end, this study was designed to gain some critical insights into microbial diversity within the coastal marine ecosystem off the coast of Puerto Rico. Using Illumina MiSeq, the V4 region of the 16S rRNA gene was sequenced with the goal of characterizing the microbial diversity representative of different coastal sites around the island of Puerto Rico. This study provided valuable insights in terms of the local bacterial taxonomic abundance, α and β diversity, and the environmental factors shaping microbial community composition and structure. The most dominant phyla across all 11 sampling sites were the Proteobacteria, Bacteroidetes, and Planctomycetes, while the least dominant taxonomic groups were the NKB19, Tenericutes, OP3, Lentisphaerae, and SAR406. The geographical area (Caribbean and Atlantic seas) and salinity gradients were the main drivers shaping the marine microbial community around the island. Despite stable physical and chemical features of the different sites, a highly dynamic microbiome was observed. This highlights Caribbean waters as one of the richest marine sources for a microbial biodiversity hotspot. The data presented here provide a basis for further temporal evaluations aiming at deciphering microbial taxonomic diversity around the island, while determining how microbes adapt to changes in the climate.
Collapse
Affiliation(s)
- Clifford Jaylen Louime
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Frances Vazquez-Sanchez
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - Dieunel Derilus
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| |
Collapse
|
14
|
van de Water JAJM, Coppari M, Enrichetti F, Ferrier-Pagès C, Bo M. Local Conditions Influence the Prokaryotic Communities Associated With the Mesophotic Black Coral Antipathella subpinnata. Front Microbiol 2020; 11:537813. [PMID: 33123099 PMCID: PMC7573217 DOI: 10.3389/fmicb.2020.537813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
Black corals are important habitat-forming species in the mesophotic and deep-sea zones of the world’s oceans because of their arborescent colony structure and tendency to form animal forests. Although we have started unraveling the ecology of mesophotic black corals, the importance of the associated microbes to their health has remained unexplored. Here, we provide in-depth assessments of black coral-microbe symbioses by investigating the spatial and temporal stability of these associations, and make comparisons with a sympatric octocoral with similar colony structure. To this end, we collected samples of Antipathella subpinnata colonies from three mesophotic shoals situated along the Ligurian Coast of the Mediterranean Sea (Bordighera, Portofino, Savona) in the spring of 2017. At the Portofino shoal, samples of A. subpinnata and the gorgonian Eunicella cavolini were collected in November 2016 and May 2017. Bacterial communities were profiled using 16S rRNA gene amplicon sequencing. The bacterial community of E. cavolini was consistently dominated by Endozoicomonas. Contrastingly, the black coral microbiome was more diverse, and was primarily composed of numerous Bacteroidetes, Alpha- and Gammaproteobacterial taxa, putatively involved in all steps of the nitrogen and sulfur cycles. Compositional differences in the A. subpinnata microbiome existed between all locations and both time points, and no phylotypes were consistently associated with A. subpinnata. This highlights that local conditions may influence the bacterial community structure and potentially nutrient cycling within the A. subpinnata holobiont. But it also suggests that this coral holobiont possesses a high degree of microbiome flexibility, which may be a mechanism to acclimate to environmental change.
Collapse
Affiliation(s)
| | - Martina Coppari
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Francesco Enrichetti
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy
| | | | - Marzia Bo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| |
Collapse
|
15
|
Modolon F, Barno AR, Villela HDM, Peixoto RS. Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. J Appl Microbiol 2020; 129:1441-1457. [PMID: 32627318 DOI: 10.1111/jam.14766] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022]
Abstract
Symbiotic relationships between corals and their associated micro-organisms are essential to maintain host homeostasis. Coral-associated bacteria (CAB) can have different beneficial roles in the coral metaorganism, such as metabolizing essential nutrients for the coral host and protecting the coral from pathogens. Many CAB exert these functions via secondary metabolites, which include antibacterial, antifouling, antitumour, antiparasitic and antiviral compounds. This review describes how analysis of CAB has led to the discovery of secondary metabolites with potential biotechnological applications. The most commonly found types of secondary metabolites, antimicrobial and antibiofilm compounds, are emphasized and described. Recently developed methods that can be applied to enhance the culturing of CAB from shallow-water reefs and the less-studied deep-sea coral reefs are also discussed. Last, we suggest how the combined use of meta-omics and innovative growth-diffusion techniques can vastly improve the discovery of novel compounds in coral environments.
Collapse
Affiliation(s)
- F Modolon
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - A R Barno
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - H D M Villela
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - R S Peixoto
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Ziegler A, Gilligan AM, Dillon JG, Pernet B. Schizasterid Heart Urchins Host Microorganisms in a Digestive Symbiosis of Mesozoic Origin. Front Microbiol 2020; 11:1697. [PMID: 32793161 PMCID: PMC7387435 DOI: 10.3389/fmicb.2020.01697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
Because of their lifestyles, abundance, and feeding habits, infaunal marine deposit feeders have a significant impact on the ocean floor. As these animals also ingest microorganisms associated with their sediment and seawater diet, their digestive tract usually contains a diverse array of bacteria. However, while most of these microorganisms are transients, some may become part of a resident gut microbiome, in particular when sheltered from the main flow of digesta in specialized gut compartments. Here, we provide an in-depth analysis of the structure and contents of the intestinal caecum (IC), a hindgut diverticulum found exclusively in schizasterid heart urchins (Echinoidea: Spatangoida: Schizasteridae). Based on specimens of Brisaster townsendi, in addition to various other schizasterid taxa, our structural characterization of the IC shows that the organ is a highly specialized gut compartment with unique structural properties. Next generation sequencing shows that the IC contains a microbial population composed predominantly of Bacteroidales, Desulfobacterales, and Spirochaetales. The microbiome of this gut compartment is significantly different in composition and lower in diversity than the microbial population in the sediment-filled main digestive tract. Inferences on the function and evolution of the IC and its microbiome suggest that this symbiosis plays a distinct role in host nutrition and that it evolved at least 66 million years ago during the final phase of the Mesozoic.
Collapse
Affiliation(s)
- Alexander Ziegler
- Institut für Evolutionsbiologie und Ökologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Ariel M. Gilligan
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Jesse G. Dillon
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Bruno Pernet
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| |
Collapse
|
17
|
Cleary DFR, Polónia ARM, Reijnen BT, Berumen ML, de Voogd NJ. Prokaryote Communities Inhabiting Endemic and Newly Discovered Sponges and Octocorals from the Red Sea. MICROBIAL ECOLOGY 2020; 80:103-119. [PMID: 31932882 DOI: 10.1007/s00248-019-01465-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we assessed prokaryotic communities of demosponges, a calcareous sponge, octocorals, sediment and seawater in coral reef habitat of the central Red Sea, including endemic species and species new to science. Goals of the study were to compare the prokaryotic communities of demosponges with the calcareous sponge and octocorals and to assign preliminary high microbial abundance (HMA) or low microbial abundance (LMA) status to the sponge species based on compositional trait data. Based on the compositional data, we were able to assign preliminary LMA or HMA status to all sponge species. Certain species, however, had traits of both LMA and HMA species. For example, the sponge Ectyoplasia coccinea, which appeared to be a LMA species, had traits, including a relatively high abundance of Chloroflexi members, that were more typical of HMA species. This included dominant OTUs assigned to two different classes within the Chloroflexi. The calcareous sponge clustered together with seawater, the known LMA sponge Stylissa carteri and other presumable LMA species. The two dominant OTUs of this species were assigned to the Deltaproteobacteria and had no close relatives in the GenBank database. The octocoral species in the present study had prokaryotic communities that were distinct from sediment, seawater and all sponge species. These were characterised by OTUs assigned to the orders Rhodospirillales, Cellvibrionales, Spirochaetales and the genus Endozoicomonas, which were rare or absent in samples from other biotopes.
Collapse
Affiliation(s)
- D F R Cleary
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A R M Polónia
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - B T Reijnen
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - M L Berumen
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - N J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Environmental Sciences, Environmental Biology Department, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Quero GM, Celussi M, Relitti F, Kovačević V, Del Negro P, Luna GM. Inorganic and Organic Carbon Uptake Processes and Their Connection to Microbial Diversity in Meso- and Bathypelagic Arctic Waters (Eastern Fram Strait). MICROBIAL ECOLOGY 2020; 79:823-839. [PMID: 31728602 DOI: 10.1007/s00248-019-01451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The deep Arctic Ocean is increasingly vulnerable to climate change effects, yet our understanding of its microbial processes is limited. We collected samples from shelf waters, mesopelagic Atlantic Waters (AW) and bathypelagic Norwegian Sea Deep Waters (NSDW) in the eastern Fram Strait, along coast-to-offshore transects off Svalbard during boreal summer. We measured community respiration, heterotrophic carbon production (HCP), and dissolved inorganic carbon utilization (DICu) together with prokaryotic abundance, diversity, and metagenomic predictions. In deep samples, HCP was significantly faster in AW than in NSDW, while we observed no differences in DICu rates. Organic carbon uptake was higher than its inorganic counterpart, suggesting a major reliance of deep microbial Arctic communities on heterotrophic metabolism. Community structure and spatial distribution followed the hydrography of water masses. Distinct from other oceans, the most abundant OTU in our deep samples was represented by the archaeal MG-II. To address the potential biogeochemical role of each water mass-specific microbial community, as well as their link with the measured rates, PICRUSt-based predicted metagenomes were built. The results showed that pathways of auto- and heterotrophic carbon utilization differed between the deep water masses, although this was not reflected in measured DICu rates. Our findings provide new insights to understand microbial processes and diversity in the dark Arctic Ocean and to progress toward a better comprehension of the biogeochemical cycles and their trends in light of climate changes.
Collapse
Affiliation(s)
- Grazia Marina Quero
- Stazione Zoologica Anton Dohrn, Integrative Marine Ecology Department, Napoli, Italy
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Consiglio Nazionale delle Ricerche, Ancona, Italy
| | - Mauro Celussi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy.
| | - Federica Relitti
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Vedrana Kovačević
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Paola Del Negro
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Gian Marco Luna
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Consiglio Nazionale delle Ricerche, Ancona, Italy
| |
Collapse
|
19
|
Chapron L, Lartaud F, Le Bris N, Peru E, Galand PE. Local Variability in Microbiome Composition and Growth Suggests Habitat Preferences for Two Reef-Building Cold-Water Coral Species. Front Microbiol 2020; 11:275. [PMID: 32153549 PMCID: PMC7047212 DOI: 10.3389/fmicb.2020.00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/06/2020] [Indexed: 11/13/2022] Open
Abstract
Cold-water coral (CWC) ecosystems provide niches and nurseries for many deep-sea species. Lophelia pertusa and Madrepora oculata, two cosmopolitan species forming three dimensional structures, are found in cold waters under specific hydrological regimes that provide food and reoxygenation. There is now more information about their feeding, their growth and their associated microbiome, however, little is known about the influence of their habitat on their physiology, or on the composition of their bacterial community. The goal of this study was to test if the habitat of L. pertusa and M. oculata influenced the hosts associated bacterial communities, the corals’ survival and their skeletal growth along the slope of a submarine canyon. A transplant experiment was used, based on sampling and cross-redeployment of coral fragments at two contrasted sites, one deeper and one shallower. Our results show that M. oculata had significantly higher skeletal growth rates in the shallower site and that it had a specific microbiome that did not change between sites. Inversely, L. pertusa had the same growth rates at both sites, but its bacterial community compositions differed between locations. Additionally, transplanted L. pertusa acquired the microbial signature of the local corals. Thus, our results suggest that M. oculata prefer the shallower habitat.
Collapse
Affiliation(s)
- Leila Chapron
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Nadine Le Bris
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| |
Collapse
|
20
|
Schwob G, Cabrol L, Poulin E, Orlando J. Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii. Front Microbiol 2020; 11:308. [PMID: 32184772 PMCID: PMC7058685 DOI: 10.3389/fmicb.2020.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Abatus agassizii is an irregular sea urchin species that inhabits shallow waters of South Georgia and South Shetlands Islands. As a deposit-feeder, A. agassizii nutrition relies on the ingestion of the surrounding sediment in which it lives barely burrowed. Despite the low complexity of its feeding habit, it harbors a long and twice-looped digestive tract suggesting that it may host a complex bacterial community. Here, we characterized the gut microbiota of specimens from two A. agassizii populations at the south of the King George Island in the West Antarctic Peninsula. Using a metabarcoding approach targeting the 16S rRNA gene, we characterized the Abatus microbiota composition and putative functional capacity, evaluating its differentiation among the gut content and the gut tissue in comparison with the external sediment. Additionally, we aimed to define a core gut microbiota between A. agassizii populations to identify potential keystone bacterial taxa. Our results show that the diversity and the composition of the microbiota, at both genetic and predicted functional levels, were mostly driven by the sample type, and to a lesser extent by the population location. Specific bacterial taxa, belonging mostly to Planctomycetacia and Spirochaetia, were differently enriched in the gut content and the gut tissue, respectively. Predictive functional profiles revealed higher abundance of specific pathways, as the sulfur cycle in the gut content and the amino acid metabolism, in the gut tissue. Further, the definition of a core microbiota allowed to obtain evidence of specific localization of bacterial taxa and the identification of potential keystone taxa assigned to the Desulfobacula and Spirochaeta genera as potentially host selected. The ecological relevance of these keystone taxa in the host metabolism is discussed.
Collapse
Affiliation(s)
- Guillaume Schwob
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Léa Cabrol
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
The Effect of Thermal Stress on the Bacterial Microbiome of Exaiptasia diaphana. Microorganisms 2019; 8:microorganisms8010020. [PMID: 31877636 PMCID: PMC7022623 DOI: 10.3390/microorganisms8010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Coral bleaching linked to climate change has generated interest in the response of coral’s bacterial microbiome to thermal stress. The sea anemone, Exaiptasia diaphana, is a popular coral model, but the response of its bacteria to thermal stress has been barely explored. To address this, we compared the bacterial communities of Great Barrier Reef (GBR) E. diaphana maintained at 26 °C or exposed to increasing temperature (26–33 °C) over two weeks. Communities were analyzed by metabarcoding of the bacterial 16S rRNA gene. Bleaching and Symbiodiniaceae health were assessed by Symbiodiniaceae cell density and dark-adapted quantum yield (Fv/Fm), respectively. Significant bleaching and reductions in Fv/Fm occurred in the heat-treated anemones above 29 °C. Overall declines in bacterial alpha diversity in all anemones were also observed. Signs of bacterial change emerged above 31 °C. Some initial outcomes may have been influenced by relocation or starvation, but collectively, the bacterial community and taxa-level data suggested that heat was the primary driver of change above 32 °C. Six bacterial indicator species were identified as potential biomarkers for thermal stress. We conclude that the bacterial microbiome of GBR E. diaphana is generally stable until a thermal threshold is surpassed, after which significant changes occur.
Collapse
|
22
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Jomchai N, Sonthirod C, Naktang C, Kongkachana W, Tangphatsornruang S. Heat-induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. Microbiologyopen 2019; 8:e935. [PMID: 31544365 PMCID: PMC6925168 DOI: 10.1002/mbo3.935] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 02/01/2023] Open
Abstract
The coral holobiont is a complex ecosystem consisting of coral animals and a highly diverse consortium of associated microorganisms including algae, fungi, and bacteria. Several studies have highlighted the importance of coral‐associated bacteria and their potential roles in promoting the host fitness and survival. Recently, dynamics of coral‐associated microbiomes have been demonstrated to be linked to patterns of coral heat tolerance. Here, we examined the effect of elevated seawater temperature on the structure and diversity of bacterial populations associated with Porites lutea, using full‐length 16S rRNA sequences obtained from Pacific Biosciences circular consensus sequencing. We observed a significant increase in alpha diversity indices and a distinct shift in microbiome composition during thermal stress. There was a marked decline in the apparent relative abundance of Gammaproteobacteria family Endozoicomonadaceae after P. lutea had been exposed to elevated seawater temperature. Concomitantly, the bacterial community structure shifted toward the predominance of Alphaproteobacteria family Rhodobacteraceae. Interestingly, we did not observe an increase in relative abundance of Vibrio‐related sequences in our heat‐stressed samples even though the appearance of Vibrio spp. has often been detected in parallel with the increase in the relative abundance of Rhodobacteraceae during thermal bleaching in other coral species. The ability of full‐length 16S rRNA sequences in resolving taxonomic uncertainty of associated bacteria at a species level enabled us to identify 24 robust indicator bacterial species for thermally stressed corals. It is worth noting that the majority of those indicator species were members of the family Rhodobacteraceae. The comparison of bacterial community structure and diversity between corals in ambient water temperature and thermally stressed corals may provide a better understanding on how bacteria symbionts contribute to the resilience of their coral hosts to ocean warming.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Nukoon Jomchai
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
23
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
24
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
25
|
Graells T, Ishak H, Larsson M, Guy L. The all-intracellular order Legionellales is unexpectedly diverse, globally distributed and lowly abundant. FEMS Microbiol Ecol 2019; 94:5110392. [PMID: 30973601 PMCID: PMC6167759 DOI: 10.1093/femsec/fiy185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
Legionellales is an order of the Gammaproteobacteria, only composed of host-adapted, intracellular bacteria, including the accidental human pathogens Legionella pneumophila and Coxiella burnetii. Although the diversity in terms of lifestyle is large across the order, only a few genera have been sequenced, owing to the difficulty to grow intracellular bacteria in pure culture. In particular, we know little about their global distribution and abundance. Here, we analyze 16/18S rDNA amplicons both from tens of thousands of published studies and from two separate sampling campaigns in and around ponds and in a silver mine. We demonstrate that the diversity of the order is much larger than previously thought, with over 450 uncultured genera. We show that Legionellales are found in about half of the samples from freshwater, soil and marine environments and quasi-ubiquitous in man-made environments. Their abundance is low, typically 0.1%, with few samples up to 1%. Most Legionellales OTUs are globally distributed, while many do not belong to a previously identified species. This study sheds a new light on the ubiquity and diversity of one major group of host-adapted bacteria. It also emphasizes the need to use metagenomics to better understand the role of host-adapted bacteria in all environments.
Collapse
Affiliation(s)
- Tiscar Graells
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 75123 Uppsala, Sweden.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Carrer de la Vall Moronta, 08193 Bellaterra, Spain
| | - Helena Ishak
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Madeleine Larsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 75123 Uppsala, Sweden
| |
Collapse
|
26
|
Jensen S, Hovland M, Lynch MDJ, Bourne DG. Diversity of deep-water coral-associated bacteria and comparison across depth gradients. FEMS Microbiol Ecol 2019; 95:5519855. [DOI: 10.1093/femsec/fiz091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTEnvironmental conditions influence species composition, including the microbial communities that associate with benthic organisms such as corals. In this study we identified and compared bacteria that associate with three common deep-water corals, Lophelia pertusa, Madrepora oculata and Paragorgia arborea, from a reef habitat on the mid-Norwegian shelf. The 16S rRNA gene amplicon sequencing data obtained revealed that >50% of sequences were represented by only five operational taxonomic units. Three were host-specific and unclassified below class level, belonging to Alphaproteobacteria with affiliation to members of the Rhizobiales order (L. pertusa), Flavobacteria affiliated with members of the Elisabethkingia genus (M. oculata) and Mollicutes sequences affiliated with the Mycoplasma genus (P. arborea). In addition, gammaproteobacterial sequences within the genera Sulfitobacter and Oleispira were found across all three deep-water coral taxa. Although highly abundant in the coral microbiomes, these sequences accounted for <0.1% of the surrounding bacterioplankton, supporting specific relationships. We combined this information with previous studies, undertaking a meta-data analysis of 165 widespread samples across coral hosts and habitats. Patterns in bacterial diversity indicated enrichment of distinct uncultured species in coral microbiomes that differed among deep (>200 m), mesophotic (30–200 m) and shallow (<30 m) reefs.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Biology, University of Bergen, PO Box 7803, Bergen 5020, Norway
| | - Martin Hovland
- Centre for Geobiology, University of Bergen
- Tech Team Solutions ASA, Stavanger
| | | | - David G Bourne
- College of Science of Engineering James Cook University, Townsville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
27
|
Kellogg CA. Microbiomes of stony and soft deep-sea corals share rare core bacteria. MICROBIOME 2019; 7:90. [PMID: 31182168 PMCID: PMC6558771 DOI: 10.1186/s40168-019-0697-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/19/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Numerous studies have shown that bacteria form stable associations with host corals and have focused on identifying conserved "core microbiomes" of bacterial associates inferred to be serving key roles in the coral holobiont. Because studies tend to focus on only stony corals (order Scleractinia) or soft corals (order Alcyonacea), it is currently unknown if there are conserved bacteria that are shared by both. A meta-analysis was done of 16S rRNA amplicon data from multiple studies generated via identical methodology to allow direct comparisons of bacterial associates across seven deep-sea corals, including both stony and soft species: Anthothela grandiflora, Anthothela sp., Lateothela grandiflora, Lophelia pertusa, Paramuricea placomus, Primnoa pacifica, and Primnoa resedaeformis. RESULTS Twenty-three operational taxonomic units (OTUs) were consistently present in greater than 50% of the coral samples. Seven amplicon sequence variants (ASVs), five of which corresponded to a conserved OTU, were consistently present in greater than 30% of the coral samples including five or greater coral species. A majority of the conserved sequences had close matches with previously identified coral-associated bacteria. While known to dominate tropical and temperate coral microbiomes, Endozoicomonas were extremely rare or absent from these deep-sea corals. An Endozoicomonas OTU associated with Lo. pertusa in this study was most similar to those from shallow-water stony corals, while an OTU associated with Anthothela spp. was most similar to those from shallow-water gorgonians. CONCLUSIONS Bacterial sequences have been identified that are conserved at the level of class Anthozoa (i.e., found in both stony and soft corals, shallow and deep). These bacterial associates are therefore hypothesized to play important symbiotic roles and are highlighted for targeted future study. These conserved bacterial associates include taxa with the potential for nitrogen and sulfur cycling, detoxification, and hydrocarbon degradation. There is also some overlap with kit contaminants that need to be resolved. Rarely detected Endozoicomonas sequences are partitioned by whether the host is a stony coral or a soft coral, and the finer clustering pattern reflects the hosts' phylogeny.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, 600 4th Street South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
28
|
Miller JI, Techtmann S, Fortney J, Mahmoudi N, Joyner D, Liu J, Olesen S, Alm E, Fernandez A, Gardinali P, GaraJayeva N, Askerov FS, Hazen TC. Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Front Microbiol 2019; 10:995. [PMID: 31143165 PMCID: PMC6521576 DOI: 10.3389/fmicb.2019.00995] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/03/2022] Open
Abstract
The Caspian Sea, which is the largest landlocked body of water on the planet, receives substantial annual hydrocarbon input from anthropogenic sources (e.g., industry, agriculture, oil exploration, and extraction) and natural sources (e.g., mud volcanoes and oil seeps). The Caspian Sea also receives substantial amounts of runoff from agricultural and municipal sources, containing nutrients that have caused eutrophication and subsequent hypoxia in the deep, cold waters. The effect of decreasing oxygen saturation and cold temperatures on oil hydrocarbon biodegradation by a microbial community is not well characterized. The purpose of this study was to investigate the effect of oxic and anoxic conditions on oil hydrocarbon biodegradation at cold temperatures by microbial communities derived from the Caspian Sea. Water samples were collected from the Caspian Sea for study in experimental microcosms. Major taxonomic orders observed in the ambient water samples included Flavobacteriales, Actinomycetales, and Oceanospirillales. Microcosms were inoculated with microbial communities from the deepest waters and amended with oil hydrocarbons for 17 days. Hydrocarbon degradation and shifts in microbial community structure were measured. Surprisingly, oil hydrocarbon biodegradation under anoxic conditions exceeded that under oxic conditions; this was particularly evident in the degradation of aromatic hydrocarbons. Important microbial taxa associated with the anoxic microcosms included known oil degraders such as Oceanospirillaceae. This study provides knowledge about the ambient community structure of the Caspian Sea, which serves as an important reference point for future studies. Furthermore, this may be the first report in which anaerobic biodegradation of oil hydrocarbons exceeds aerobic biodegradation.
Collapse
Affiliation(s)
- John I Miller
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen Techtmann
- Biosciences Division, Michigan Technological University, Houghton, MI, United States
| | - Julian Fortney
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada
| | - Dominique Joyner
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jiang Liu
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Scott Olesen
- Harvard School of Public Health, Cambridge, MA, United States
| | - Eric Alm
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Adolfo Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | | | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
29
|
Goldsmith DB, Kellogg CA, Morrison CL, Gray MA, Stone RP, Waller RG, Brooke SD, Ross SW. Comparison of microbiomes of cold-water corals Primnoa pacifica and Primnoa resedaeformis, with possible link between microbiome composition and host genotype. Sci Rep 2018; 8:12383. [PMID: 30120375 PMCID: PMC6098105 DOI: 10.1038/s41598-018-30901-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 08/08/2018] [Indexed: 12/26/2022] Open
Abstract
Cold-water corals provide critical habitats for a multitude of marine species, but are understudied relative to tropical corals. Primnoa pacifica is a cold-water coral prevalent throughout Alaskan waters, while another species in the genus, Primnoa resedaeformis, is widely distributed in the Atlantic Ocean. This study examined the V4-V5 region of the 16S rRNA gene after amplifying and pyrosequencing bacterial DNA from samples of these species. Key differences between the two species' microbiomes included a robust presence of bacteria belonging to the Chlamydiales order in most of the P. pacifica samples, whereas no more than 2% of any microbial community from P. resedaeformis comprised these bacteria. Microbiomes of P. resedaeformis exhibited higher diversity than those of P. pacifica, and the two species largely clustered separately in a principal coordinate analysis. Comparison of P. resedaeformis microbiomes from samples collected in two submarine canyons revealed a significant difference between locations. This finding mirrored significant genetic differences among the P. resedaeformis from the two canyons based upon population genetic analysis of microsatellite loci. This study presents the first report of microbiomes associated with these two coral species.
Collapse
Affiliation(s)
- Dawn B Goldsmith
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, FL, United States of America
| | - Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, FL, United States of America.
| | - Cheryl L Morrison
- Leetown Science Center, US Geological Survey, Kearneysville, WV, United States of America
| | - Michael A Gray
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, FL, United States of America
| | - Robert P Stone
- Auke Bay Laboratories, Alaska Fisheries Science Center, NOAA Fisheries, 17109, Point Lena Loop Road, Juneau, AK, United States of America
| | - Rhian G Waller
- Darling Marine Center, University of Maine, Walpole, ME, United States of America
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University, St. Teresa, FL, United States of America
| | - Steve W Ross
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
30
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|
31
|
Pootakham W, Mhuantong W, Putchim L, Yoocha T, Sonthirod C, Kongkachana W, Sangsrakru D, Naktang C, Jomchai N, Thongtham N, Tangphatsornruang S. Dynamics of coral-associated microbiomes during a thermal bleaching event. Microbiologyopen 2018; 7:e00604. [PMID: 29573244 PMCID: PMC6182559 DOI: 10.1002/mbo3.604] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 02/01/2023] Open
Abstract
Coral‐associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral‐associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea‐associated bacterial and algal communities throughout a natural bleaching event, using full‐length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral‐associated microbiomes during thermal stress. The balance of the symbiosis shifted from a predominant association between corals and Gammaproteobacteria to a predominance of Alphaproteobacteria and to a lesser extent Betaproteobacteria following the bleaching event. On the contrary, the composition and diversity of Symbiodinium communities remained unaltered throughout the bleaching event. It appears that the switching and/or shuffling of Symbiodinium types may not be the primary mechanism used by P. lutea to cope with increasing seawater temperature. The shifts in the structure and diversity of associated bacterial communities may contribute more to the survival of the coral holobiont under heat stress.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
32
|
van de Water JAJM, Voolstra CR, Rottier C, Cocito S, Peirano A, Allemand D, Ferrier-Pagès C. Seasonal Stability in the Microbiomes of Temperate Gorgonians and the Red Coral Corallium rubrum Across the Mediterranean Sea. MICROBIAL ECOLOGY 2018; 75:274-288. [PMID: 28681143 DOI: 10.1007/s00248-017-1006-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Populations of key benthic habitat-forming octocoral species have declined significantly in the Mediterranean Sea due to mass mortality events caused by microbial disease outbreaks linked to high summer seawater temperatures. Recently, we showed that the microbial communities of these octocorals are relatively structured; however, our knowledge on the seasonal dynamics of these microbiomes is still limited. To investigate their seasonal stability, we collected four soft gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa and Leptogorgia sarmentosa) and the precious red coral (Corallium rubrum) from two coastal locations with different terrestrial impact levels in the Mediterranean Sea, and used next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all soft gorgonian species were dominated by the same 'core microbiome' bacteria belonging to the Endozoicomonas and the Cellvibrionales clade BD1-7, whereas the red coral microbiome was primarily composed of 'core' Spirochaetes, Oceanospirillales ME2 and Parcubacteria. The associations with these bacterial taxa were relatively consistent over time at each location for each octocoral species. However, differences in microbiome composition and seasonal dynamics were observed between locations and could primarily be attributed to locally variant bacteria. Overall, our data provide further evidence of the intricate symbiotic relationships that exist between Mediterranean octocorals and their associated microbes, which are ancient and highly conserved over both space and time, and suggest regulation of the microbiome composition by the host, depending on local conditions.
Collapse
Affiliation(s)
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cecile Rottier
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | - Silvia Cocito
- Marine Environment Research Centre, ENEA, La Spezia, Italy
| | - Andrea Peirano
- Marine Environment Research Centre, ENEA, La Spezia, Italy
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|
33
|
van Haren H, Hanz U, de Stigter H, Mienis F, Duineveld G. Internal wave turbulence at a biologically rich Mid-Atlantic seamount. PLoS One 2017; 12:e0189720. [PMID: 29267294 PMCID: PMC5739425 DOI: 10.1371/journal.pone.0189720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 11/18/2022] Open
Abstract
The turbulence regime near the crest of a biologically rich seamount of the Mid-Atlantic Ridge southwest of the Azores was registered in high spatial and temporal resolution. Internal tides and their higher harmonics dominate the internal wave motions, producing considerable shear-induced turbulent mixing in layers of 10-50 m thickness. This interior mixing of about 100 times open-ocean interior values is observed both at a high-resolution temperature sensor mooring-site at the crest, 770 m water depth being nearly 400 m below the top of the seamount, and a CTD-yoyo site at the slope off the crest 400 m horizontally away, 880 m water depth. Only at the mooring site, additionally two times higher turbulence is observed near the bottom, associated with highly non-linear wave breaking. The highest abundance of epifauna, notably sponges, are observed just below the crest and 100 m down the eastern slope (700-800 m) in a cross-ridge video-camera transect. This sponge belt is located in a water layer of depressed oxygen levels (saturation 63±2%) with a local minimum centered around 700 m. Turbulent mixing supplies oxygen to this region from above and below and is expected to mix nutrients away from this biodegraded layer towards the depth of highest abundance of macrofauna.
Collapse
Affiliation(s)
- Hans van Haren
- Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Den Burg, the Netherlands
- * E-mail:
| | - Ulrike Hanz
- Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Den Burg, the Netherlands
| | - Henko de Stigter
- Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Den Burg, the Netherlands
| | - Furu Mienis
- Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Den Burg, the Netherlands
| | - Gerard Duineveld
- Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Den Burg, the Netherlands
| |
Collapse
|
34
|
Medina-Silva R, Oliveira RR, Trindade FJ, Borges LGA, Lopes Simão TL, Augustin AH, Valdez FP, Constant MJ, Simundi CL, Eizirik E, Groposo C, Miller DJ, da Silva PR, Viana AR, Ketzer JMM, Giongo A. Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes a community distinct from that of surrounding marine sediment and water. Antonie van Leeuwenhoek 2017; 111:533-550. [PMID: 29110156 DOI: 10.1007/s10482-017-0975-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/31/2017] [Indexed: 11/27/2022]
Abstract
As the depth increases and the light fades in oceanic cold seeps, a variety of chemosynthetic-based benthic communities arise. Previous assessments reported polychaete annelids belonging to the family Siboglinidae as part of the fauna at cold seeps, with the 'Vestimentifera' clade containing specialists that depend on microbial chemosynthetic endosymbionts for nutrition. Little information exists concerning the microbiota of the external portion of the vestimentiferan trunk wall. We employed 16S rDNA-based metabarcoding to describe the external microbiota of the chitin tubes from the vestimentiferan Escarpia collected from a chemosynthetic community in a cold seep area at the southwestern Atlantic Ocean. The most abundant operational taxonomic unit (OTU) belonged to the family Pirellulaceae (phylum Planctomycetes), and the second most abundant OTU belonged to the order Methylococcales (phylum Proteobacteria), composing an average of 21.1 and 15.4% of the total reads on tubes, respectively. These frequencies contrasted with those from the surrounding environment (sediment and water), where they represent no more than 0.1% of the total reads each. Moreover, some taxa with lower abundances were detected only in Escarpia tube walls. These data constitute on the first report of an epibiont microbial community found in close association with external surface of a cold-seep metazoan, Escarpia sp., from a chemosynthetic community in the southwestern Atlantic Ocean.
Collapse
Affiliation(s)
- Renata Medina-Silva
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael R Oliveira
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda J Trindade
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz G A Borges
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Taiz L Lopes Simão
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adolpho H Augustin
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda P Valdez
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo J Constant
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina L Simundi
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Eizirik
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claudia Groposo
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | - Dennis J Miller
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | - Priscila Reis da Silva
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | | | - João M M Ketzer
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Giongo
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil. .,, Av. Ipiranga, 6681 Prédio 96J Sala 501-04, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Shiu JH, Keshavmurthy S, Chiang PW, Chen HJ, Lou SP, Tseng CH, Justin Hsieh H, Allen Chen C, Tang SL. Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep 2017; 7:14933. [PMID: 29097716 PMCID: PMC5668310 DOI: 10.1038/s41598-017-14927-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 11/08/2022] Open
Abstract
Seasonal variation in temperature fluctuations may provide corals and their algal symbionts varying abilities to acclimate to changing temperatures. We hypothesized that different temperature ranges between seasons may promote temperature-tolerance of corals, which would increase stability of a bacterial community following thermal stress. Acropora muricata coral colonies were collected in summer and winter (water temperatures were 23.4-30.2 and 12.1-23.1 °C, respectively) from the Penghu Archipelago in Taiwan, then exposed to 6 temperature treatments (10-33 °C). Changes in coral-associated bacteria were determined after 12, 24, and 48 h. Based on 16S rRNA gene amplicons and Illumina sequencing, bacterial communities differed between seasons and treatments altered the dominant bacteria. Cold stress caused slower shifts in the bacterial community in winter than in summer, whereas a more rapid shift occurred under heat stress in both seasons. Results supported our hypothesis that bacterial community composition of corals in winter are more stable in cold temperatures but changed rapidly in hot temperatures, with opposite results for the bacterial communities in summer. We infer that the thermal tolerance ranges of coral-associated bacteria, with a stable community composition, are associated with their short-term (3 mo) seawater thermal history. Therefore, seasonal acclimation may increase tolerance of coral-associated bacteria to temperature fluctuations.
Collapse
Affiliation(s)
- Jia-Ho Shiu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shueh-Ping Lou
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu, 880, Taiwan
| | | | - Sen-Lin Tang
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan.
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
36
|
Sharp KH, Pratte ZA, Kerwin AH, Rotjan RD, Stewart FJ. Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata. MICROBIOME 2017; 5:120. [PMID: 28915923 PMCID: PMC5603060 DOI: 10.1186/s40168-017-0329-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/20/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Understanding the associations among corals, their photosynthetic zooxanthella symbionts (Symbiodinium), and coral-associated prokaryotic microbiomes is critical for predicting the fidelity and strength of coral symbioses in the face of growing environmental threats. Most coral-microbiome associations are beneficial, yet the mechanisms that determine the composition of the coral microbiome remain largely unknown. Here, we characterized microbiome diversity in the temperate, facultatively symbiotic coral Astrangia poculata at four seasonal time points near the northernmost limit of the species range. The facultative nature of this system allowed us to test seasonal influence and symbiotic state (Symbiodinium density in the coral) on microbiome community composition. RESULTS Change in season had a strong effect on A. poculata microbiome composition. The seasonal shift was greatest upon the winter to spring transition, during which time A. poculata microbiome composition became more similar among host individuals. Within each of the four seasons, microbiome composition differed significantly from that of surrounding seawater but was surprisingly uniform between symbiotic and aposymbiotic corals, even in summer, when differences in Symbiodinium density between brown and white colonies are the highest, indicating that the observed seasonal shifts are not likely due to fluctuations in Symbiodinium density. CONCLUSIONS Our results suggest that symbiotic state may not be a primary driver of coral microbial community organization in A. poculata, which is a surprise given the long-held assumption that excess photosynthate is of importance to coral-associated microbes. Rather, other environmental or host factors, in this case, seasonal changes in host physiology associated with winter quiescence, may drive microbiome diversity. Additional studies of A. poculata and other facultatively symbiotic corals will provide important comparisons to studies of reef-building tropical corals and therefore help to identify basic principles of coral microbiome assembly, as well as functional relationships among holobiont members.
Collapse
Affiliation(s)
- Koty H. Sharp
- Department of Biology, Marine Biology and Environmental Science, Roger Williams University, 1 Old Ferry Road, Bristol, RI 02809 USA
| | | | | | - Randi D. Rotjan
- Boston University, Boston, USA
- New England Aquarium, Boston, USA
| | | |
Collapse
|
37
|
Koo H, Hakim JA, Morrow CD, Eipers PG, Davila A, Andersen DT, Bej AK. Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J Microbiol Methods 2017; 140:15-22. [PMID: 28655556 PMCID: PMC6108183 DOI: 10.1016/j.mimet.2017.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
In this study, using NextGen sequencing of the collective 16S rRNA genes obtained from two sets of samples collected from Lake Obersee, Antarctica, we compared and contrasted two bioinformatics tools, PICRUSt and Tax4Fun. We then developed an R script to assess the taxonomic and predictive functional profiles of the microbial communities within the samples. Taxa such as Pseudoxanthomonas, Planctomycetaceae, Cyanobacteria Subsection III, Nitrosomonadaceae, Leptothrix, and Rhodobacter were exclusively identified by Tax4Fun that uses SILVA database; whereas PICRUSt that uses Greengenes database uniquely identified Pirellulaceae, Gemmatimonadetes A1-B1, Pseudanabaena, Salinibacterium and Sinobacteraceae. Predictive functional profiling of the microbial communities using Tax4Fun and PICRUSt separately revealed common metabolic capabilities, while also showing specific functional IDs not shared between the two approaches. Combining these functional predictions using a customized R script revealed a more inclusive metabolic profile, such as hydrolases, oxidoreductases, transferases; enzymes involved in carbohydrate and amino acid metabolisms; and membrane transport proteins known for nutrient uptake from the surrounding environment. Our results present the first molecular-phylogenetic characterization and predictive functional profiles of the microbial mat communities in Lake Obersee, while demonstrating the efficacy of combining both the taxonomic assignment information and functional IDs using the R script created in this study for a more streamlined evaluation of predictive functional profiles of microbial communities.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey D Morrow
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter G Eipers
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alfonso Davila
- NASA Ames Research Center, MS 245-3, Moffett Field, CA, USA
| | | | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
38
|
Woo S, Yang SH, Chen HJ, Tseng YF, Hwang SJ, De Palmas S, Denis V, Imahara Y, Iwase F, Yum S, Tang SL. Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum. PLoS One 2017; 12:e0183663. [PMID: 28859111 PMCID: PMC5578639 DOI: 10.1371/journal.pone.0183663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/08/2017] [Indexed: 01/17/2023] Open
Abstract
Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts.
Collapse
Affiliation(s)
- Seonock Woo
- Korea Institute of Ocean Science & Technology, Geoje, Republic of Korea
- Faculty of Marine Environmental Science, University of Science and Technology (UST), Geoje, Republic of Korea
| | - Shan-Hua Yang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Fang Tseng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sung-Jin Hwang
- Department of Eco-Biological Science, Woosuk University, Jincheon, Republic of Korea
| | - Stephane De Palmas
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Yukimitsu Imahara
- Wakayama Laboratory, Biological Institute on Kuroshio, Wakayama City, Wakayama, Japan
| | - Fumihito Iwase
- Shikoku Marine Life Laboratory, Otsuki-Town, Kochi, Japan
| | - Seungshic Yum
- Korea Institute of Ocean Science & Technology, Geoje, Republic of Korea
- Faculty of Marine Environmental Science, University of Science and Technology (UST), Geoje, Republic of Korea
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
39
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Sonthirod C, Naktang C, Thongtham N, Tangphatsornruang S. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci Rep 2017; 7:2774. [PMID: 28584301 PMCID: PMC5459821 DOI: 10.1038/s41598-017-03139-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
Coral reefs are a complex ecosystem consisting of coral animals and a vast array of associated symbionts including the dinoflagellate Symbiodinium, fungi, viruses and bacteria. Several studies have highlighted the importance of coral-associated bacteria and their fundamental roles in fitness and survival of the host animal. The scleractinian coral Porites lutea is one of the dominant reef-builders in the Indo-West Pacific. Currently, very little is known about the composition and structure of bacterial communities across P. lutea reefs. The purpose of this study is twofold: to demonstrate the advantages of using PacBio circular consensus sequencing technology in microbial community studies and to investigate the diversity and structure of P. lutea-associated microbiome in the Indo-Pacific. This is the first metagenomic study of marine environmental samples that utilises the PacBio sequencing system to capture full-length 16S rRNA sequences. We observed geographically distinct coral-associated microbial profiles between samples from the Gulf of Thailand and Andaman Sea. Despite the geographical and environmental impacts on the coral-host interactions, we identified a conserved community of bacteria that were present consistently across diverse reef habitats. Finally, we demonstrated the superior performance of full-length 16S rRNA sequences in resolving taxonomic uncertainty of coral associates at the species level.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lalita Putchim
- Phuket Marine Biological Center, Phuket, 83000, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
40
|
Kellogg CA, Goldsmith DB, Gray MA. Biogeographic Comparison of Lophelia-Associated Bacterial Communities in the Western Atlantic Reveals Conserved Core Microbiome. Front Microbiol 2017; 8:796. [PMID: 28522997 PMCID: PMC5415624 DOI: 10.3389/fmicb.2017.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM). However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%). At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core sequences, whereas open Atlantic samples had a much higher proportion of locally consistent bacteria. Further, predictive functional profiling highlights the potential for the L. pertusa microbiome to contribute to chemoautotrophy, nutrient cycling, and antibiotic production.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Dawn B Goldsmith
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Michael A Gray
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| |
Collapse
|
41
|
Gajigan AP, Diaz LA, Conaco C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiologyopen 2017; 6. [PMID: 28425179 PMCID: PMC5552946 DOI: 10.1002/mbo3.478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont.
Collapse
Affiliation(s)
- Andrian P Gajigan
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Leomir A Diaz
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
42
|
Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci Rep 2017; 7:44714. [PMID: 28303925 PMCID: PMC5356181 DOI: 10.1038/srep44714] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/13/2017] [Indexed: 11/16/2022] Open
Abstract
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L-1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.
Collapse
Affiliation(s)
- Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lauren K. Yum
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Stephan G. Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
43
|
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol 2017; 25:125-140. [DOI: 10.1016/j.tim.2016.11.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
44
|
van de Water JAJM, Melkonian R, Voolstra CR, Junca H, Beraud E, Allemand D, Ferrier-Pagès C. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria. MICROBIAL ECOLOGY 2017; 73:466-478. [PMID: 27726033 DOI: 10.1007/s00248-016-0858-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/09/2016] [Indexed: 05/22/2023]
Abstract
Gorgonians are key habitat-forming species of Mediterranean benthic communities, but their populations have suffered from mass mortality events linked to high summer seawater temperatures and microbial disease. However, our knowledge on the diversity, dynamics and function of gorgonian-associated microbial communities is limited. Here, we analysed the spatial variability of the microbiomes of five sympatric gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia sarmentosa and Paramuricea clavata), collected from the Mediterranean Sea over a scale of ∼1100 km, using next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all gorgonian species were generally dominated by members of the genus Endozoicomonas, which were at very low abundance in the surrounding seawater. Although the composition of the core microbiome (operational taxonomic units consistently present in a species) was found to be unique for each host species, significant overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome composition were observed. Functional predictive profiling indicated that these differences could be attributed to seawater pollution. Taken together, our data indicate that gorgonian-associated microbiomes are composed of spatially conserved bacteria (core microbiome members) and locally variant members, and that local pollution may influence these local associations, potentially impacting gorgonian health.
Collapse
Affiliation(s)
| | - Rémy Melkonian
- Centre Scientifique de Monaco, 8 Quai Antoine 1, MC 98000, Monaco, Monaco
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Howard Junca
- Microbiomas Foundation - Division of Ecogenomics & Holobionts, Chia, Colombia
| | - Eric Beraud
- Centre Scientifique de Monaco, 8 Quai Antoine 1, MC 98000, Monaco, Monaco
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1, MC 98000, Monaco, Monaco
| | | |
Collapse
|
45
|
Kellogg CA, Ross SW, Brooke SD. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ 2016; 4:e2529. [PMID: 27703865 PMCID: PMC5047221 DOI: 10.7717/peerj.2529] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023] Open
Abstract
Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey , St. Petersburg , FL , United States of America
| | - Steve W Ross
- Center for Marine Science, University of North Carolina at Wilmington , Wilmington , NC , United States of America
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University , St. Teresa , FL , United States of America
| |
Collapse
|
46
|
Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 2016; 100:8315-24. [PMID: 27557714 PMCID: PMC5018254 DOI: 10.1007/s00253-016-7777-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/01/2023]
Abstract
Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
Collapse
Affiliation(s)
- Matthew J Neave
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Amy Apprill
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|