1
|
Huang Y, Yan X, Chu X, Shi Y, Xiang J, Yang S. Duck Tembusu virus induced mitophagy in vacuolate spermatogenic cells is mediated by PINK1-Parkin pathway. Poult Sci 2025; 104:104795. [PMID: 39823839 PMCID: PMC11786760 DOI: 10.1016/j.psj.2025.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
As a significant emerging and re-emerging pathogen in China, the widely spread of Duck Tembusu virus (DTMUV) caused enormous economic losses to poultry industry. On account of DTMUV diseases' main symptoms on haemorrhagic oophoritis, intensive attentions were focused on female reproductive organ. Nevertheless, the DTMUV infection of sperm and testis manifested that testis was an important vector for vertical transmission of DTMUV. In the present study, histopathology, immunofluorescence and transmission electron microscopy (TEM) analysis of DTMUV-infected duck testis revealed that DTMUV infection induced seminiferous epithelium injury via spermatogenic cells vacuolization. After DTMUV infection, the expression of autophagy-related genes and proteins in testis were significantly up-regulated. Further TEM analysis discovered that different stages of autophagic and mitophagy structures were visible in cytoplasm of spermatogenic cells after DTMUV infection. And more notably, the testicular protein expression of PINK1 and Parkin were significantly increased after DTMUV infection. In summary, our study discovered that, after DTMUV infection, PINK1-Parkin pathway mediated mitophagy were activated and then induced spermatogenic cells vacuolization.
Collapse
Affiliation(s)
- Yufei Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Guangling College, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Xiaoman Yan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Xiaoya Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yonghong Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jacob Xiang
- Clinical Pharmacist, Foothills Medical Centre, 140329St NW Calgary Alberta Canada T2N 2T9
| | - Sheng Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
2
|
Cheng Y, Wang R, Wu Q, Chen J, Wang A, Wu Z, Sun F, Zhu S. Advancements in Research on Duck Tembusu Virus Infections. Viruses 2024; 16:811. [PMID: 38793692 PMCID: PMC11126125 DOI: 10.3390/v16050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.
Collapse
Affiliation(s)
- Yuting Cheng
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Ruoheng Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Qingguo Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Jinying Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Anping Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Zhi Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| |
Collapse
|
3
|
Ni Z, Yun T, Chen L, Ye W, Hua J, Zhu Y, Liu G, Zhang C. Study on the Protective Immunity Induced by Pseudotyped Baculovirus Expressing the E Protein of Tembusu Virus in Ducklings. Genes (Basel) 2023; 14:1316. [PMID: 37510221 PMCID: PMC10378915 DOI: 10.3390/genes14071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The Duck Tembusu virus (DTMUV), a pathogenic flavivirus, has been causing significant economic losses in the Chinese poultry industry since 2010. This virus can severely decrease egg production and inhibit the growth of laying ducks and ducklings. While many vaccines have been developed to prevent DTMUV infection, fresh outbreaks continue to occur, as few effective vaccines are available. The E glycoprotein of DTMUV is the primary target for inducing protective immunity in the natural host. Therefore, we conducted an investigation and successfully developed a recombinant baculovirus containing the DTMUV E gene. Ducklings were then vaccinated with the purified protein derived from this virus as a potential vaccine candidate. Our findings demonstrated that the E glycoprotein of DTMUV was highly expressed in Sf9 cells. The vaccination of ducklings with the recombinant baculovirus Bac-E resulted in the induction of strong humoral and cellular immune responses. Most significantly, we observed that the vaccine provided 100% protective immunity against lethal challenges with the DTMUV YY5 strain.
Collapse
Affiliation(s)
- Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy at Agricultural Sciences, Shanghai 200241, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Li T, Ren Y, Zhang T, Zhai X, Wang X, Wang J, Xing B, Miao R, Li N, Wei L. Duck LGP2 Downregulates RIG-I Signaling Pathway-Mediated Innate Immunity Against Tembusu Virus. Front Immunol 2022; 13:916350. [PMID: 35784309 PMCID: PMC9241487 DOI: 10.3389/fimmu.2022.916350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) has been demonstrated to play a critical role in activating downstream signaling in response to viral RNA. However, its role in ducks' antiviral innate immunity is less well understood, and how gene-mediated signaling is regulated is unknown. The regulatory role of the duck laboratory of genetics and physiology 2 (duLGP2) in the duck RIG-I (duRIG-I)-mediated antiviral innate immune signaling system was investigated in this study. In duck embryo fibroblast (DEF) cells, overexpression of duLGP2 dramatically reduced duRIG-I-mediated IFN-promotor activity and cytokine expression. In contrast, the knockdown of duLGP2 led to an opposite effect on the duRIG-I-mediated signaling pathway. We demonstrated that duLGP2 suppressed the duRIG-I activation induced by duck Tembusu virus (DTMUV) infection. Intriguingly, when duRIG-I signaling was triggered, duLGP2 enhanced the production of inflammatory cytokines. We further showed that duLGP2 interacts with duRIG-I, and this interaction was intensified during DTMUV infection. In summary, our data suggest that duLGP2 downregulated duRIG-I mediated innate immunity against the Tembusu virus. The findings of this study will help researchers better understand the antiviral innate immune system's regulatory networks in ducks.
Collapse
Affiliation(s)
- Tianxu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Yanyan Ren
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Tingting Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai’an City, China
| | - Xinyu Zhai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Xiuyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Jinchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Bin Xing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Runchun Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai’an City, China
| |
Collapse
|
5
|
Huang Y, Chu X, Zhang Y, Yang S, Shi Y, Wu J, Qiusheng C. Duck Tembusu virus infection causes testicular atrophy. Theriogenology 2022; 188:52-62. [DOI: 10.1016/j.theriogenology.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
6
|
New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021; 10:pathogens10081010. [PMID: 34451474 PMCID: PMC8398659 DOI: 10.3390/pathogens10081010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
Collapse
|
7
|
Han K, Zhao D, Liu Q, Liu Y, Huang X, Yang J, Zhang L, Li Y. Transcriptome analysis reveals new insight of duck Tembusu virus (DTMUV)-infected DF-1 cells. Res Vet Sci 2021; 137:150-158. [PMID: 33975194 DOI: 10.1016/j.rvsc.2021.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused huge economic losses to the duck industry in China since 2010. Moreover, the infection has spread rapidly, resulted in a potential public health concern. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we used RNA-Seq to detect the gene changes in DF-1 cells infected and mock-infected with DTMUV. A total of 663 differentially-expressed genes (DEGs) were identified in DTMUV-infected compared with mock-infected DF-1 cells at 24 h post-infection (hpi), among which 590 were up regulated and 73 were down regulated. Gene Ontology analysis indicated that the DEGs were mainly involved in cellular process, immune system processes, metabolic processes, and signal-organism process. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly involved in several signaling pathways such as Toll-like receptor signaling, Jak-STAT signaling, RIG-I-like receptor signaling and AGE-RAGE signaling pathway. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the sequencing data. To our knowledge, this study is the first to analyze the transcriptomic change in DF-1 cells following DTMUV infection. We believe that our research provides useful information in better understanding the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of life sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
8
|
Zou K, Asiamah CA, Lu LL, Liu Y, Pan Y, Chen T, Zhao Z, Su Y. Ovarian transcriptomic analysis and follicular development of Leizhou black duck. Poult Sci 2020; 99:6173-6187. [PMID: 33142535 PMCID: PMC7647846 DOI: 10.1016/j.psj.2020.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022] Open
Abstract
This study investigated the factors that caused the differences in egg production during the development of ovarian follicles in Leizhou black ducks. Leizhou black ducks population was divided into 2 groups as high-yield group (HG) and low-yield group (LG). The number of eggs (NE), age at first egg (AFE), weight at first egg, and egg weight (EW) of both groups were recorded, and differences were analyzed using the t test. The logistic model was used to simulate the egg production curves to analyze the production rules. The ovarian follicles of both duck groups were collected to count the number of different grades sized follicles, weigh the ovaries, and observe follicular sections to analyze the developmental differences. Ovarian transcriptomic sequencing was performed to investigate differentially expressed genes and signal pathways in both duck groups. The results revealed a significant difference (P < 0.01) in the NE laid, AFE, and EW between both groups. Comparatively, HG had significantly more (P < 0.01) large yellow follicles (LYF) than LG. The density of medullary layer cells of the follicle section was greater in HG than LG ducks. Transcriptome sequencing revealed a total of 1,027 differentially expressed genes between the HG and LG ducks of which 495 genes were upregulated, and 532 genes were downregulated. Fifty genes were related to reproduction and reproductive processes. Kyoto Encyclopedia of Genes and Genomes–enriched signaling pathways revealed 274 signal pathways enriched in these differentially expressed genes of which the steroid biosynthesis pathway was significantly enriched. Analysis (Q < 0.05) showed that HSD3β → gonadotropin-releasing hormone (GnRH) and estrogen receptor (ESR) → LHβ/ERK1/2 were enriched in the steroid biosynthesis signal pathway. Follicle-stimulating hormone signal pathway mediated by HSD3β → GnRH and ESR → LHβ/ERK1/2 may be involved in ovarian follicle development to regulate LYF reserve process and affect its ovulation cycle, which in turn influence the egg production of Leizhou black ducks.
Collapse
Affiliation(s)
- Kun Zou
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | | | - Li-Li Lu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Yuanbo Liu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Yiting Pan
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Tongxin Chen
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Zhihui Zhao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China.
| | - Ying Su
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China.
| |
Collapse
|
9
|
Abstract
The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenicity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading pathogens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune response have made great progress. In the review, we provide an overview of DTMUV and summarize current advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.
Collapse
|
10
|
Jiang H, Wei L, Wang D, Wang J, Zhu S, She R, Liu T, Tian J, Quan R, Hou L, Li Z, Chu J, Zhou J, Guo Y, Xi Y, Song H, Yuan F, Liu J. ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. J Proteomics 2019; 212:103598. [PMID: 31785380 DOI: 10.1016/j.jprot.2019.103598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) infection induces porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammatory lesions in piglets and sows. To better understand the host responses to PCV3 infection, isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with LC-MS/MS analysis was used for quantitative determination of differentially regulated cellular proteins in the lungs of specific-pathogen-free piglets after 4 weeks of PCV3 infection. Totally, 3429 proteins were detected in three independent mass spectrometry analyses, of which 242 differential cellular proteins were significantly regulated, consisting of 100 upregulated proteins and 142 downregulated proteins in PCV3-infected group relative to control group. Bioinformatics analysis revealed that these higher or lower abundant proteins involved primarily metabolic processes, innate immune response, MHC-I and MHC-II components, and phagosome pathways. Ten genes encoding differentially regulated proteins were selected for investigation via real-time RT-PCR. The expression levels of six representative proteins, OAS1, Mx1, ISG15, IFIT3, SOD2, and HSP60, were further confirmed by Western blotting and immunohistochemistry. This study attempted for the first time to investigate the protein profile of PCV3-infected piglets using iTRAQ technology; our findings provide valuable information to better understand the mechanisms underlying the host responses to PCV3 infection in piglets. SIGNIFICANCE: Our study identified differentially abundant proteins related to a variety of potential signaling pathways in the lungs of PCV3-infected piglets. These findings provide valuable information to better understand the mechanisms of host responses to PCV3 infection.
Collapse
Affiliation(s)
- Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Jijing Tian
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China.
| |
Collapse
|
11
|
Zhong C, Li J, Mao L, Liu M, Zhu X, Li W, Sun M, Ji X, Xiao F, Yang L, Zhang W, Liao Z. Proteomics analysis reveals heat shock proteins involved in caprine parainfluenza virus type 3 infection. BMC Vet Res 2019; 15:151. [PMID: 31101113 PMCID: PMC6525452 DOI: 10.1186/s12917-019-1897-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Caprine parainfluenza virus type 3 (CPIV3) is major pathogen of goat herds causing serious respiratory tract disease and economic losses to the goat industry in China. We analyzed the differential proteomics of CPIV3-infected Madin-Darby bovine kidney (MDBK) cells using quantitative iTRAQ coupled LC-MS/MS. In addition, four DEPs were validated by qRT-PCR and western blot analysis. RESULTS Quantitative proteomics analysis revealed 163 differentially expressed proteins (DEPs) between CPIV3-infected and mock-infected groups (p-value < 0.05 and fold change > 1.2), among which 91 were down-regulated and 72 were up-regulated. Gene ontology (GO) analysis showed that these DEPs were involved in molecular functions, cellular components and biological processes. Biological functions in which the DEPs were involved in included diseases, genetic information processing, metabolism, environmental information processing, cellular processes, and organismal systems. STRING analysis revealed that four heat shock proteins (HSPs) included HSPA5, HSPA1B, HSP90B1 and HSPA6 may be associated with proliferation of CPIV3 in MDBK cells. qRT-PCR and western blot analysis showed that the selected HSPs were identical to the quantitative proteomics data. CONCLUSION To our knowledge, this is the first report of the proteomic changes in MDBK cells after CPIV3 infection.
Collapse
Affiliation(s)
- Chunyan Zhong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China. .,School of Pharmacy, Linyi University, Linyi, 276000, China.
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fang Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Zheng Liao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
12
|
Han K, Zhao D, Liu Y, Liu Q, Huang X, Yang J, Zhang L, Li Y. The ubiquitin-proteasome system is necessary for the replication of duck Tembusu virus. Microb Pathog 2019; 132:362-368. [PMID: 31054366 PMCID: PMC7126904 DOI: 10.1016/j.micpath.2019.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. The cellular factors required for DTMUV replication have been poorly studied. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates diverse cellular processes, including endocytosis and signal transduction, which may be involved in the entry of virus. In the present study, we explored the interplay between DTMUV replication and the UPS in BHK-21 cells and found that treatment with proteasome inhibitor (MG132 and lactacystin) significantly decreased the DTMUV progency at the early infection stage. We further revealed that inhibition of the UPS mainly occurs on the level of viral protein expression and RNA transcription. In addition, using specific siRNAs targeting ubiquitin reduces the production of viral progeny. In the presence of MG132 the staining for the envelope protein of DTMUV was dramatically reduced in comparison with the untreated control cells. Overall, our observations reveal an important role of the UPS in multiple steps of the DTMUV infection cycle and identify the UPS as a potential drug target to modulate the impact of DTMUV infection. Treatment with proteasome inhibitor significantly decreased the DTMUV progency. Inhibition of the UPS mainly occurs on the level of viral protein expression and RNA transcription. Inhibit the expression of ubiquitin reduces the production of viral progeny.
Collapse
Affiliation(s)
- Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
13
|
ITRAQ-Based Quantitative Proteomics Reveals the Proteome Profiles of Primary Duck Embryo Fibroblast Cells Infected with Duck Tembusu Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1582709. [PMID: 30809531 PMCID: PMC6369498 DOI: 10.1155/2019/1582709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022]
Abstract
Outbreaks of duck Tembusu virus (DTMUV) have caused substantial economic losses in the major duck-producing regions of China since 2010. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in duck embryo fibroblast cells (DEFs) infected and mock-infected with DTMUV. In total, 434 cellular proteins were differentially expressed, among which 116, 76, and 339 proteins were differentially expressed in the DTMUV-infected DEFs at 12, 24, and 42 hours postinfection, respectively. The Gene Ontology analysis indicated that the biological processes of the differentially expressed proteins were primarily related to cellular processes, metabolic processes, biological regulation, response to stimulus, and cellular organismal processes and that the molecular functions in which the differentially expressed proteins were mainly involved were binding and catalytic activity. Some selected proteins that were found to be differentially expressed in DTMUV-infected DEFs were further confirmed by real-time PCR. The results of this study provide valuable insight into DTMUV-host interactions. This could lead to a better understanding of DTMUV infection mechanisms.
Collapse
|
14
|
Yun T, Hua J, Ye W, Yu B, Ni Z, Chen L, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in the spleen tissue of Cairna moschata. J Proteomics 2018; 193:162-172. [PMID: 30339941 DOI: 10.1016/j.jprot.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Duck reovirus (DRV), a member of the genus Orthoreovirus in the family Reoviridae, was first isolated from Muscovy ducks. The disease associated with DRV causes great economic losses to the duck industry. However, the responses of duck (Cairna moschata) to the classical/novel DRV (C/NDRV) infections are largely unknown. To reveal the relationship of pathogenesis and immune response, the proteomes of duck spleen cells under the control and C/NDRV infections were compared. In total, 5986 proteins were identified, of which 5389 proteins were quantified. The different accumulated proteins (DAPs) under the C/NDRV infections showed displayed various biological functions and diverse subcellular localizations. The proteins related to the serine protease system were siginificantly changed, suggesting that the activated serine protease system may play an important role under the C/NDRV infections. Furthermore, the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues were compared. Only a small number of common DAPs were identified in both liver and spleen tissues, suggesting diversified pattern involved in the responses to the C/NRDV infections. However, the changes in the proteins involved in the serine protease systems were similar in both liver and spleen cells. Our data may give a comprehensive resource for investigating the responses to C/NDRV infections in ducks. SIGNIFICANCE: A newly developed MS/MS-based method involving isotopomer labels and 'tandem mass' has been applied to protein accurate quantification in current years. However, no studies on the responses of duck (Cairna moschata) spleen tissue to the classical/novel DRV (C/NDRV) infections have been performed. As a continued study of our previous report on the responses of duck liver tissue to the C/NDRV infections, the current study further compared the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues. Our results will provide an opportunity to reveal the relationship of pathogenesis and immune response and basic information on the pathogenicity of C/NDRV in ducks.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
15
|
Zhao D, Han K, Huang X, Zhang L, Wang H, Liu N, Tian Y, Liu Q, Yang J, Liu Y, Li Y. Screening and identification of B-cell epitopes within envelope protein of tembusu virus. Virol J 2018; 15:142. [PMID: 30223850 PMCID: PMC6142368 DOI: 10.1186/s12985-018-1052-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 01/17/2023] Open
Abstract
Background Tembusu virus is a newly emerging flavivirus that caused egg-drop syndrome in ducks in China. TMUV envelope protein is a major structural protein locates at the surface of tembusu virus particle. During tembusu virus infection, envelope protein plays a pivotal role in induction of neutralizing antibody. However, B cell epitopes within envelope protein have not been well studied. Method A series of 13 peptides derived from E protein of tembusu virus were synthesized and screened by Dot blot with tembusu virus-positive duck serum. Potential B-cell epitopes were respectively fused with GST tag and expressed in E. coli. The immunogenicity and protective efficiency of epitopes were assessed in ducks. Results Dot blot assay identified the peptides P21 (amino acids 301–329), P23 (amino acids 369–387), P27 (amino acids 464–471) and P28 (amino acids 482–496) as potential B-cell epitopes within the envelope protein of tembusu virus. Immunization of prokaryotically expressed epitopes elicited specific antibodies in ducks and the specific antibody elicited by P21, P27 and P28 could neutralized tembusu virus. In addition, protective test suggested that P21 and P27 could completely protect immunized ducks from TMUV challenge. Conclusion Four potential B cell epiotpes within tembusu virus envelope protein were identified and analyzed in vitro and in vivo. It was demonstrated that two of them (P21 and P27) could elicit neutralizing antibodies in ducks and offer complete protection against tembusu virus challenge. This findings will contribute to the development of epitope vaccine for tembusu virus prevention.
Collapse
Affiliation(s)
- Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China.
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Huili Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Na Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Yujie Tian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
16
|
Yun T, Hua J, Ye W, Yu B, Chen L, Ni Z, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in Cairna moschata. Sci Rep 2018; 8:10079. [PMID: 29973707 PMCID: PMC6031628 DOI: 10.1038/s41598-018-28499-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Duck reovirus (DRV) is an typical aquatic bird pathogen belonging to the Orthoreovirus genus of the Reoviridae family. Reovirus causes huge economic losses to the duck industry. Although DRV has been identified and isolated long ago, the responses of Cairna moschata to classical/novel duck reovirus (CDRV/NDRV) infections are largely unknown. To investigate the relationship of pathogenesis and immune response, proteomes of C. moschata liver cells under the C/NDRV infections were analyzed, respectively. In total, 5571 proteins were identified, among which 5015 proteins were quantified. The differential expressed proteins (DEPs) between the control and infected liver cells displayed diverse biological functions and subcellular localizations. Among the DEPs, most of the metabolism-related proteins were down-regulated, suggesting a decrease in the basal metabolisms under C/NDRV infections. Several important factors in the complement, coagulation and fibrinolytic systems were significantly up-regulated by the C/NDRV infections, indicating that the serine protease-mediated innate immune system might play roles in the responses to the C/NDRV infections. Moreover, a number of molecular chaperones were identified, and no significantly changes in their abundances were observed in the liver cells. Our data may give a comprehensive resource for investigating the regulation mechanism involved in the responses of C. moschata to the C/NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
17
|
Zhang W, Chen S, Mahalingam S, Wang M, Cheng A. An updated review of avian-origin Tembusu virus: a newly emerging avian Flavivirus. J Gen Virol 2017; 98:2413-2420. [PMID: 28874226 DOI: 10.1099/jgv.0.000908] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People's Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shun Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
18
|
Bi KR, Han KK, Liu QT, Zhao DM, Huang XM, Liu YZ, Yang J, Li Y. Molecular cloning, characterization, and expression of duck 2'-5'-oligoadenylate synthetase-like gene. Gene 2017; 629:43-51. [PMID: 28754636 DOI: 10.1016/j.gene.2017.07.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein that exerts antiviral effects through the RNase L- or retinoic acid-inducible gene I (RIG-I)-dependent signalling pathway. In this study, we identified and cloned the OASL gene (named duOASL) from healthy adult Cherry Valley ducks. Full-length duOASL cDNA (1630bp) encoded a 504-amino acid polypeptide containing three conserved domains, namely, nucleotidyltransferase domain, 2'-5'-oligoadenylate synthetase domain, and two ubiquitin-like repeats. DuOASL mRNA expression was quantified by performing quantitative reverse transcription-PCR (qRT-PCR). Results of qRT-PCR showed that duOASL was broadly expressed in all examined tissues, with the highest mRNA expression in the large intestine. Antiviral activity of duOASL was measured by determining its effect on Duck Tembusu virus (DTMUV) replication in vitro. We found that duOASL overexpression slightly inhibited DTMUV replication, whereas duOASL knockdown by using a specific small interfering RNA increased DTMUV replication in DF-1 cells. Thus, we successfully cloned and characterized the antiviral protein duOASL from Cherry Valley ducks and found that it exerted antiviral effects against DTMUV. These results provide a solid foundation for performing further studies to determine the mechanism underlying the antiviral effect of duOASL at the cellular level.
Collapse
Affiliation(s)
- Ke-Ran Bi
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Jiangsu Key Laboratory for Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lian Yungang, China
| | - Kai-Kai Han
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qing-Tao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dong-Min Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin-Mei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yu-Zhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|