1
|
Lei B, Wang S, Zhang X, Chen T, Lin Y. Novel protein ligase based on dual split intein. Biochem Biophys Res Commun 2024; 720:150097. [PMID: 38754162 DOI: 10.1016/j.bbrc.2024.150097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Inteins are unique single-turnover enzymes that can excise themselves from the precursor protein without the aid of any external cofactors or energy. In most cases, inteins are covalently linked with the extein sequences and protein splicing happens spontaneously. In this study, a novel protein ligation system was developed based on two atypical split inteins without cross reaction, in which the large segments of one S1 and one S11 split intein fusion protein acted as a protein ligase, the small segments (only several amino acids long) was fused to the N-extein and C-extein, respectively. The splicing activity was demonstrated in E. coli and in vitro with different extein sequences, which showed ∼15% splicing efficiency in vitro. The protein trans-splicing in vitro was further optimized, and possible reaction explanations were explored. As a proof of concept, we expect this approach to expand the scope of trans-splicing-based protein engineering and provide new clues for intein based protein ligase.
Collapse
Affiliation(s)
- Bing Lei
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Suyang Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaomeng Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Tianqi Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Ying Lin
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
2
|
Tharappel AM, Li Z, Zhu YC, Wu X, Chaturvedi S, Zhang QY, Li H. Calcimycin Inhibits Cryptococcus neoformans In Vitro and In Vivo by Targeting the Prp8 Intein Splicing. ACS Infect Dis 2022; 8:1851-1868. [PMID: 35948057 PMCID: PMC9464717 DOI: 10.1021/acsinfecdis.2c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug resistance is a significant concern in the treatment of diseases, including cryptococcosis caused by Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga). Alternative drug targets are necessary to overcome drug resistance before it attains a critical stage. Splicing of inteins from pro-protein precursors is crucial for activities of essential proteins hosting intein elements in many organisms, including human pathogens such as Cne and Cga. Through a high-throughput screening, we identified calcimycin (CMN) as a potent Prp8 intein splicing inhibitor with a minimum inhibitory concentration (MIC) of 1.5 μg/mL against the wild-type Cne-H99 (Cne-WT or Cne). In contrast, CMN inhibited the intein-less mutant strain (Cne-Mut) with a 16-fold higher MIC. Interestingly, Aspergillus fumigatus and a few Candida species were resistant to CMN. Further studies indicated that CMN reduced virulence factors such as urease activity, melanin production, and biofilm formation in Cne. CMN also inhibited Cne intracellular infection in macrophages. In a target-specific split nanoluciferase assay, the IC50 of CMN was 4.6 μg/mL. Binding of CMN to recombinant Prp8 intein was demonstrated by thermal shift assay and microscale thermophoresis. Treating Cne cells with CMN reduced intein splicing. CMN was fungistatic and showed a synergistic effect with the known antifungal drug amphotericin B. Finally, CMN treatment at 20 mg/kg body weight led to 60% reduction in lung fungal load in a cryptococcal pulmonary infection mouse model. Overall, CMN represents a potent antifungal with a novel mechanism of action to treat Cne and possibly Cga infections.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Yan Chun Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
- The BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Fernandes JAL, Zatti MDS, Arantes TD, de Souza MFB, Santoni MM, Rossi D, Zanelli CF, Liu XQ, Bagagli E, Theodoro RC. Cryptococcus neoformans Prp8 Intein: An In Vivo Target-Based Drug Screening System in Saccharomyces cerevisiae to Identify Protein Splicing Inhibitors and Explore Its Dynamics. J Fungi (Basel) 2022; 8:jof8080846. [PMID: 36012834 PMCID: PMC9410109 DOI: 10.3390/jof8080846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Inteins are genetic mobile elements that are inserted within protein-coding genes, which are usually housekeeping genes. They are transcribed and translated along with the host gene, then catalyze their own splicing out of the host protein, which assumes its functional conformation thereafter. As Prp8 inteins are found in several important fungal pathogens and are absent in mammals, they are considered potential therapeutic targets since inhibiting their splicing would selectively block the maturation of fungal proteins. We developed a target-based drug screening system to evaluate the splicing of Prp8 intein from the yeast pathogen Cryptococcus neoformans (CnePrp8i) using Saccharomyces cerevisiae Ura3 as a non-native host protein. In our heterologous system, intein splicing preserved the full functionality of Ura3. To validate the system for drug screening, we examined cisplatin, which has been described as an intein splicing inhibitor. By using our system, new potential protein splicing inhibitors may be identified and used, in the future, as a new class of drugs for mycosis treatment. Our system also greatly facilitates the visualization of CnePrp8i splicing dynamics in vivo.
Collapse
Affiliation(s)
- José Alex Lourenço Fernandes
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
- Ottawa Hospital Research Institute (OHRI), The University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.A.L.F.); (R.C.T.)
| | - Matheus da Silva Zatti
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
| | - Thales Domingos Arantes
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Maria Fernanda Bezerra de Souza
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
| | - Mariana Marchi Santoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Danuza Rossi
- Pensabio, São Paulo 05005-010, São Paulo, Brazil
| | - Cleslei Fernando Zanelli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Eduardo Bagagli
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Raquel Cordeiro Theodoro
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Correspondence: (J.A.L.F.); (R.C.T.)
| |
Collapse
|
4
|
Tharappel AM, Li Z, Li H. Inteins as Drug Targets and Therapeutic Tools. Front Mol Biosci 2022; 9:821146. [PMID: 35211511 PMCID: PMC8861304 DOI: 10.3389/fmolb.2022.821146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant pathogens are of significant concern in recent years. Hence new antifungal and anti-bacterial drug targets are urgently needed before the situation goes beyond control. Inteins are polypeptides that self-splice from exteins without the need for cofactors or external energy, resulting in joining of extein fragments. Inteins are present in many organisms, including human pathogens such as Mycobacterium tuberculosis, Cryptococcus neoformans, C. gattii, and Aspergillus fumigatus. Because intein elements are not present in human genes, they are attractive drug targets to develop antifungals and antibiotics. Thus far, a few inhibitors of intein splicing have been reported. Metal-ions such as Zn2+ and Cu2+, and platinum-containing compound cisplatin inhibit intein splicing in M. tuberculosis and C. neoformans by binding to the active site cysteines. A small-molecule inhibitor 6G-318S and its derivative 6G-319S are found to inhibit intein splicing in C. neoformans and C. gattii with a MIC in nanomolar concentrations. Inteins have also been used in many other applications. Intein can be used in activating a protein inside a cell using small molecules. Moreover, split intein can be used to deliver large genes in experimental gene therapy and to kill selected species in a mixed population of microbes by taking advantage of the toxin-antitoxin system. Furthermore, split inteins are used in synthesizing cyclic peptides and in developing cell culture model to study infectious viruses including SARS-CoV-2 in the biosafety level (BSL) 2 facility. This mini-review discusses the recent research developments of inteins in drug discovery and therapeutic research.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Hongmin Li,
| |
Collapse
|
5
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
6
|
Zhang F, Zhang W. Encrypting Chemical Reactivity in Protein Sequences toward
Information‐Coded
Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
7
|
Kumar A, Nair R, Kumar M, Banerjee A, Chakrabarti A, Rudramurthy SM, Bagga R, Gaur NA, Mondal AK, Prasad R. Assessment of antifungal resistance and associated molecular mechanism in Candida albicans isolates from different cohorts of patients in North Indian state of Haryana. Folia Microbiol (Praha) 2020; 65:747-754. [PMID: 32219719 DOI: 10.1007/s12223-020-00785-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/10/2020] [Indexed: 01/04/2023]
Abstract
The present study examines the trend in distribution of Candida species and their antifungal resistance patterns in hospitals across Haryana, a North Indian state with poorly addressed epidemiology of fungal infections. In our collection of 228 Candida isolates, Candida albicans dominated in both high vaginal swab (HVS) and urine samples while Candida glabrata and Candida tropicalis were the second-highest non-albicans Candida species (NAC), respectively. Of note, in blood samples, C. tropicalis and C. albicans were present in equal numbers. All 228 isolates were subjected to antifungal susceptibility tests, whereby 51% of C. albicans recovered from HVS samples displayed fluconazole resistance. To understand its mechanistic basis, expression profiling of efflux pump genes CDR1, CDR2, MDR1 and azole drug target, ERG11 was performed in 20 randomly selected resistant isolates, wherein many isolates elicited higher expression. Further, ERG11 gene sequencing suggested that most of the isolates harbored mutations, which are not reported with azole resistance. However, one isolate, RPCA9 (MIC 64 μg/mL) harbored triple mutation (Y132C, F145L, A114V), wherein Y132 and F145 sites were previously implicated in azole resistance. Interestingly, one isolate, (RPCA61) having MIC > 128 μg/mL harbored a novel mutation, G129R. Of note, HVS isolates RPCA 21, RPCA 22, and RPCA 44 (MICs 64 to > 128 μg/mL) did not show any change in alteration in ERG11 or overexpression of efflux pump genes. Together, this study presents a first report of Candida infections in selected hospitals of Haryana State.
Collapse
Affiliation(s)
- Ashok Kumar
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| | - Remya Nair
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| | - Mohit Kumar
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India.,International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| | - Arunaloke Chakrabarti
- The Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Ruchika Bagga
- Fortis Memorial Research Institute (FMRI), Gurugram, India
| | - Naseem A Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India.
| |
Collapse
|
8
|
Rana R, Sharma R, Kumar A. Repurposing of Existing Statin Drugs for Treatment of Microbial Infections: How Much Promising? Infect Disord Drug Targets 2020; 19:224-237. [PMID: 30081793 DOI: 10.2174/1871526518666180806123230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/20/2018] [Accepted: 07/23/2018] [Indexed: 01/27/2023]
Abstract
Today's microbial infections' resistance to approved drugs, the emergence of new infectious diseases and lack of vaccines, create a huge threat to human health. Thus, there is an urgent need to create novel antimicrobial agents, but the high cost and prolonged timeline of novel drug discovery and development is the major barrier to make new drugs. Therefore, there is a need for specific cost effective approaches in order to identify new drugs for the treatment of various microbial infections. Drug repurposition is an alternative technique to find existing clinically approved drugs for other indications. This approach may enhance the portfolio of Pharmaceutical companies by reducing the time and money required for the development of new chemical entity. In literature, various studies have reported some encouraging results regarding the antimicrobial use of existing statin drugs. Further, some clinical studies have also shown the protective effect of statin drugs in reduction of the morbidity and mortality due to many infectious diseases but complete understanding is still lacking. Thus, there is a need for better understanding of the use of statin drugs, especially in the context of antimicrobial effects. In this review, we try to summarize the use of statin drugs in various infectious diseases and their proposed antimicrobial mechanism of action. Further, current challenges and future perspectives of repurposition of statin drugs as antimicrobial agents have also been discussed.
Collapse
Affiliation(s)
- Ritika Rana
- Department of Pharmacology, Indo-Soviet Friendship Pharmacy College (ISFCP), Moga, Punjab, India
| | - Ruchika Sharma
- Department of Biotechnology, Indo-Soviet Friendship Institute of Professional Studies (ISFIPS), Moga, Punjab, India
| | - Anoop Kumar
- Department of Pharmacology, Indo-Soviet Friendship Pharmacy College (ISFCP), Moga, Punjab, India
| |
Collapse
|
9
|
Li Z, Fu B, Green CM, Liu B, Zhang J, Lang Y, Chaturvedi S, Belfort M, Liao G, Li H. Cisplatin protects mice from challenge of Cryptococcus neoformans by targeting the Prp8 intein. Emerg Microbes Infect 2019; 8:895-908. [PMID: 31223062 PMCID: PMC6598491 DOI: 10.1080/22221751.2019.1625727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The Prp8 intein is one of the most widespread eukaryotic inteins, present in important pathogenic fungi, including Cryptococcus and Aspergillus species. Because the processed Prp8 carries out essential and non-redundant cellular functions, a Prp8 intein inhibitor is a mechanistically novel antifungal agent. In this report, we demonstrated that cisplatin, an FDA-approved cancer drug, significantly arrested growth of Prp8 intein-containing fungi C. neoformans and C. gattii, but only poorly inhibited growth of intein-free Candida species. These results suggest that cisplatin arrests fungal growth through specific inhibition of the Prp8 intein. Cisplatin was also found to significantly inhibit growth of C. neoformans in a mouse model. Our results further showed that cisplatin inhibited Prp8 intein splicing in vitro in a dose-dependent manner by direct binding to the Prp8 intein. Crystal structures of the apo- and cisplatin-bound Prp8 inteins revealed that two degenerate cisplatin molecules bind at the intein active site. Mutation of the splicing-site residues led to loss of cisplatin binding, as well as impairment of intein splicing. Finally, we found that overexpression of the Prp8 intein in cryptococcal species conferred cisplatin resistance. Overall, these results indicate that the Prp8 intein is a novel antifungal target worth further investigation.
Collapse
Affiliation(s)
- Zhong Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Bin Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
| | - Binbin Liu
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Jing Zhang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Yuekun Lang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Sudha Chaturvedi
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Hongmin Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
10
|
Rajasekharan SK, Ray AK, Ramesh S, Kannappan Mohanvel S. Species-specific detection of Candida tropicalis using evolutionary conserved intein DNA sequences. Lett Appl Microbiol 2018; 66:378-383. [PMID: 29427451 DOI: 10.1111/lam.12861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/04/2018] [Accepted: 02/04/2018] [Indexed: 01/05/2023]
Abstract
Inteins (internal proteins) are self-splicing transportable genetic elements present in conserved regions of housekeeping genes. The study highlights the importance of intein as a potential diagnostic marker for species-specific identification of Candida tropicalis, a rapidly emerging opportunistic human pathogen. Initial steps of primer validation, sequence alignment, phylogenetic tree analysis, gel electrophoresis and real-time polymerase chain reaction (PCR) assays were performed to confirm the specificity of the designed primers. The primers were selective for C. tropicalis with 100% inclusivity and showed no cross-species or cross-genera matches. The established technique is a prototype for developing multifaceted PCR assays and for point-of-care testing in near future. SIGNIFICANCE AND IMPACT OF THE STUDY Development of molecular markers for specific detection of microbial pathogens using real-time polymerase chain reaction (PCR) is an appealing and challenging technique. A real-time PCR is an emerging technology frequently used to detect the aetiologic agents. In recent times, designing species-specific primers for pathogen detection is gaining momentum. The method offers rapid, accurate and cost-effective strategy to identify the target, thus providing sufficient time to instigate appropriate chemotherapy. The study highlights the use of intein DNA sequence as molecular markers for species-specific identification of Candida tropicalis. The study also offers a prototype model for developing multifaceted PCR assays using intein DNA sequences, and provides a developmental starting point for point-of-care testing in near future.
Collapse
Affiliation(s)
- S K Rajasekharan
- Centre for Research and Development, PRIST University, Thanjavur, India.,School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - A K Ray
- Central Institute of Brackishwater Aquaculture-ICAR, Chennai, India
| | - S Ramesh
- Centre for Research and Development, PRIST University, Thanjavur, India
| | | |
Collapse
|
11
|
Green CM, Novikova O, Belfort M. The dynamic intein landscape of eukaryotes. Mob DNA 2018; 9:4. [PMID: 29416568 PMCID: PMC5784728 DOI: 10.1186/s13100-018-0111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inteins are mobile, self-splicing sequences that interrupt proteins and occur across all three domains of life. Scrutiny of the intein landscape in prokaryotes led to the hypothesis that some inteins are functionally important. Our focus shifts to eukaryotic inteins to assess their diversity, distribution, and dissemination, with the aim to comprehensively evaluate the eukaryotic intein landscape, understand intein maintenance, and dissect evolutionary relationships. RESULTS This bioinformatics study reveals that eukaryotic inteins are scarce, but present in nuclear genomes of fungi, chloroplast genomes of algae, and within some eukaryotic viruses. There is a preponderance of inteins in several fungal pathogens of humans and plants. Inteins are pervasive in certain proteins, including the nuclear RNA splicing factor, Prp8, and the chloroplast DNA helicase, DnaB. We find that eukaryotic inteins frequently localize to unstructured loops of the host protein, often at highly conserved sites. More broadly, a sequence similarity network analysis of all eukaryotic inteins uncovered several routes of intein mobility. Some eukaryotic inteins appear to have been acquired through horizontal transfer with dsDNA viruses, yet other inteins are spread through intragenomic transfer. Remarkably, endosymbiosis can explain patterns of DnaB intein inheritance across several algal phyla, a novel mechanism for intein acquisition and distribution. CONCLUSIONS Overall, an intriguing picture emerges for how the eukaryotic intein landscape arose, with many evolutionary forces having contributed to its current state. Our collective results provide a framework for exploring inteins as novel regulatory elements and innovative drug targets.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| |
Collapse
|