1
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Biochar modulates intracellular electron transfer for nitrate reduction in denitrifying anaerobic methane oxidizing archaea. BIORESOURCE TECHNOLOGY 2024; 406:130998. [PMID: 38885730 DOI: 10.1016/j.biortech.2024.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Denitrifying anaerobic methane oxidizing (DAMO) archaea plays a significant role in simultaneously nitrogen removal and methane mitigation, yet its limited metabolic activity hinders engineering applications. This study employed biochar to explore its potential for enhancing the metabolic activity and nitrate reduction capacity of DAMO microorganisms. Sawdust biochar (7 g/L) was found to increase the nitrate reduction rate by 2.85 times, although it did not affect the nitrite reduction rate individually. Scanning electron microscopy (SEM) and fluorescence excitation-emission matrix (EEM) analyses revealed that biochar promoted microbial aggregation, and stimulated the secretion of extracellular polymeric substances (EPS). Moreover, biochar bolstered the redox capacity and conductivity of the biofilm, notably enhancing the activity of the electron transfer system by 1.65 times. Key genes involved in intracellular electron transport (Hdr, MHC, Rnf) and membrane transport proteins (BBP, ABC, NDH) of archaea were significantly up-regulated. These findings suggest that biochar regulates electrons generated by reverse methanogenesis to the membrane for nitrate reduction.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
2
|
Chaikeeratisak V, Khanna K, Nguyen KT, Egan ME, Enustun E, Armbruster E, Lee J, Pogliano K, Villa E, Pogliano J. Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage. SCIENCE ADVANCES 2022; 8:eabj9670. [PMID: 35507660 PMCID: PMC9067925 DOI: 10.1126/sciadv.abj9670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 03/16/2022] [Indexed: 06/03/2023]
Abstract
Many eukaryotic viruses assemble mature particles within distinct subcellular compartments, but bacteriophages are generally assumed to assemble randomly throughout the host cell cytoplasm. Here, we show that viral particles of Pseudomonas nucleus-forming jumbo phage PhiPA3 assemble into a unique structure inside cells we term phage bouquets. We show that after capsids complete DNA packaging at the surface of the phage nucleus, tails assemble and attach to capsids, and these particles accumulate over time in a spherical pattern, with tails oriented inward and the heads outward to form bouquets at specific subcellular locations. Bouquets localize at the same fixed distance from the phage nucleus even when it is mispositioned, suggesting an active mechanism for positioning. These results mark the discovery of a pathway for organizing mature viral particles inside bacteria and demonstrate that nucleus-forming jumbo phages, like most eukaryotic viruses, are highly spatially organized during all stages of their lytic cycle.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katrina T Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eray Enustun
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Armbruster
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Willenbücher K, Wibberg D, Huang L, Conrady M, Ramm P, Gätcke J, Busche T, Brandt C, Szewzyk U, Schlüter A, Barrero Canosa J, Maus I. Phage Genome Diversity in a Biogas-Producing Microbiome Analyzed by Illumina and Nanopore GridION Sequencing. Microorganisms 2022; 10:368. [PMID: 35208823 PMCID: PMC8879888 DOI: 10.3390/microorganisms10020368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.
Collapse
Affiliation(s)
- Katharina Willenbücher
- System Microbiology, Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Marius Conrady
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Patrice Ramm
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Julia Gätcke
- Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany;
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Christian Brandt
- Institute for Infection Medicine and Hospital Hygiene, University Hospital Jena, Kastanienstraße 1, 07747 Jena, Germany;
| | - Ulrich Szewzyk
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Jimena Barrero Canosa
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| |
Collapse
|
4
|
Evseev P, Sykilinda N, Gorshkova A, Kurochkina L, Ziganshin R, Drucker V, Miroshnikov K. Pseudomonas Phage PaBG-A Jumbo Member of an Old Parasite Family. Viruses 2020; 12:E721. [PMID: 32635178 PMCID: PMC7412058 DOI: 10.3390/v12070721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteriophage PaBG is a jumbo Myoviridae phage isolated from water of Lake Baikal. This phage has limited diffusion ability and thermal stability and infects a narrow range of Pseudomonas aeruginosa strains. Therefore, it is hardly suitable for phage therapy applications. However, the analysis of the genome of PaBG presents a number of insights into the evolutionary history of this phage and jumbo phages in general. We suggest that PaBG represents an ancient group distantly related to all known classified families of phages.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Nina Sykilinda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| |
Collapse
|
5
|
Peng MW, Guan Y, Liu JH, Chen L, Wang H, Xie ZZ, Li HY, Chen YP, Liu P, Yan P, Guo JS, Liu G, Shen Y, Fang F. Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:753-761. [PMID: 32381778 PMCID: PMC7285686 DOI: 10.1107/s1600577520002349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.
Collapse
Affiliation(s)
- Meng-Wen Peng
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Jian-Hong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Liang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Han Wang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Zheng-Zhe Xie
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People’s Republic of China
| | - Hai-Yan Li
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, People’s Republic of China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| |
Collapse
|
6
|
Versantvoort W, Guerrero-Cruz S, Speth DR, Frank J, Gambelli L, Cremers G, van Alen T, Jetten MSM, Kartal B, Op den Camp HJM, Reimann J. Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila. Front Microbiol 2018; 9:1672. [PMID: 30140258 PMCID: PMC6094997 DOI: 10.3389/fmicb.2018.01672] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
Methane is a potent greenhouse gas, which can be converted by microorganism at the expense of oxygen, nitrate, nitrite, metal-oxides or sulfate. The bacterium ‘Candidatus Methylomirabilis oxyfera,’ a member of the NC10 phylum, is capable of nitrite-dependent anaerobic methane oxidation. Prolonged enrichment of ‘Ca. M. oxyfera’ with cerium added as trace element and without nitrate resulted in the shift of the dominant species. Here, we present a high quality draft genome of the new species ‘Candidatus Methylomirabilis lanthanidiphila’ and use comparative genomics to analyze its metabolic potential in both nitrogen and carbon cycling. To distinguish between gene content specific for the ‘Ca. Methylomirabilis’ genus and the NC10 phylum, the genome of a distantly related NC10 phylum member, CSP1-5, an aerobic methylotroph, is included in the analysis. All genes for the conversion of nitrite to N2 identified in ‘Ca. M. oxyfera’ are conserved in ‘Ca. M. lanthanidiphila,’ including the two putative genes for NO dismutase. In addition both species have several heme-copper oxidases potentially involved in NO and O2 respiration. For the oxidation of methane ‘Ca. Methylomirabilis’ species encode a membrane bound methane monooxygenase. CSP1-5 can act as a methylotroph, but lacks the ability to activate methane. In contrast to ‘Ca. M. oxyfera,’ which harbors three methanol dehydrogenases (MDH), both CSP1-5 and ‘Ca. M. lanthanidiphila’ only encode a lanthanide-dependent XoxF-type MDH, once more underlining the importance of rare earth elements for methylotrophic bacteria. The pathways for the subsequent oxidation of formaldehyde to carbon dioxide and for the Calvin–Benson–Bassham cycle are conserved in all species. Furthermore, CSP1-5 can only interconvert nitrate and nitrite, but lacks subsequent nitrite or NO reductases. Thus, it appears that although the conversion of methanol to carbon dioxide is present in several NC10 phylum bacteria, the coupling of nitrite reduction to the oxidation of methane is a trait so far unique to the genus ‘Ca. Methylomirabilis.’
Collapse
Affiliation(s)
- Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Simon Guerrero-Cruz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Daan R Speth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Lavinia Gambelli
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Theo van Alen
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
7
|
Cremers G, Gambelli L, van Alen T, van Niftrik L, Op den Camp HJM. Bioreactor virome metagenomics sequencing using DNA spike-ins. PeerJ 2018; 6:e4351. [PMID: 29441238 PMCID: PMC5807891 DOI: 10.7717/peerj.4351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
With the emergence of Next Generation Sequencing, major advances were made with regard to identifying viruses in natural environments. However, bioinformatical research on viruses is still limited because of the low amounts of viral DNA that can be obtained for analysis. To overcome this limitation, DNA is often amplified with multiple displacement amplification (MDA), which may cause an unavoidable bias. Here, we describe a case study in which the virome of a bioreactor is sequenced using Ion Torrent technology. DNA-spiking of samples is compared with MDA-amplified samples. DNA for spiking was obtained by amplifying a bacterial 16S rRNA gene. After sequencing, the 16S rRNA gene reads were removed by mapping to the Silva database. Three samples were tested, a whole genome from Enterobacteria P1 Phage and two viral metagenomes from an infected bioreactor. For one sample, the new DNA-spiking protocol was compared with the MDA technique. When MDA was applied, the overall GC content of the reads showed a bias towards lower GC%, indicating a change in composition of the DNA sample. Assemblies using all available reads from both MDA and the DNA-spiked samples resulted in six viral genomes. All six genomes could be almost completely retrieved (97.9%–100%) when mapping the reads from the DNA-spiked sample to those six genomes. In contrast, 6.3%–77.7% of three viral genomes was covered by reads obtained using the MDA amplification method and only three were nearly fully covered (97.4%–100%). This case study shows that DNA-spiking could be a simple and inexpensive alternative with very low bias for sequencing of metagenomes for which low amounts of DNA are available.
Collapse
Affiliation(s)
- Geert Cremers
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Lavinia Gambelli
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Theo van Alen
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|