1
|
Huang Q, Yang X, Zhao X, Han X, Sun S, Xu C, Cui N, Lu M. Co-infection of H9N2 subtype avian influenza virus and QX genotype live attenuated infectious bronchitis virus increase the pathogenicity in SPF chickens. Vet Microbiol 2024; 295:110163. [PMID: 38959807 DOI: 10.1016/j.vetmic.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Avian influenza virus (AIV) infection and vaccination against live attenuated infectious bronchitis virus (aIBV) are frequent in poultry worldwide. Here, we evaluated the clinical effect of H9N2 subtype AIV and QX genotype aIBV co-infection in specific-pathogen-free (SPF) white leghorn chickens and explored the potential mechanisms underlying the observed effects using by 4D-FastDIA-based proteomics. The results showed that co-infection of H9N2 AIV and QX aIBV increased mortality and suppressed the growth of SPF chickens. In particular, severe lesions in the kidneys and slight respiratory signs similar to the symptoms of virulent QX IBV infection were observed in some co-infected chickens, with no such clinical signs observed in single-infected chickens. The replication of H9N2 AIV was significantly enhanced in both the trachea and kidneys, whereas there was only a slight effect on the replication of the QX aIBV. Proteomics analysis showed that the IL-17 signaling pathway was one of the unique pathways enriched in co-infected chickens compared to single infected-chickens. A series of metabolism and immune response-related pathways linked with co-infection were also significantly enriched. Moreover, co-infection of the two pathogens resulted in the enrichment of the negative regulation of telomerase activity. Collectively, our study supports the synergistic effect of the two pathogens, and pointed out that aIBV vaccines might increased IBV-associated lesions due to pathogenic co-infections. Exacerbation of the pathogenicity and mortality in H9N2 AIV and QX aIBV co-infected chickens possibly occurred because of an increase in H9N2 AIV replication, the regulation of telomerase activity, and the disturbance of cell metabolism and the immune system.
Collapse
Affiliation(s)
- Qinghua Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Xiao Yang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Xiaoran Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Xiaoxia Han
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Shouli Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Chuantian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Ning Cui
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| | - Mei Lu
- Weifang Engineering Vocational College, Qingzhou, China.
| |
Collapse
|
2
|
Lee S, Kang S, Heo J, Hong Y, Vu TH, Truong AD, Lillehoj HS, Hong YH. MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:838-855. [PMID: 37970505 PMCID: PMC10640957 DOI: 10.5187/jast.2022.e127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 11/17/2023]
Abstract
The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.
Collapse
Affiliation(s)
- Sooyeon Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Suyeon Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jubi Heo
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeojin Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Thi Hao Vu
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology,
National Institute of Veterinary Research, Hanoi 100000, Viet
Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology
Laboratory, Agricultural Research Services, United States Department of
Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
3
|
Transcriptomic Profiling of Mouse Mast Cells upon Pathogenic Avian H5N1 and Pandemic H1N1 Influenza A Virus Infection. Viruses 2022; 14:v14020292. [PMID: 35215885 PMCID: PMC8877972 DOI: 10.3390/v14020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
Mast cells, widely residing in connective tissues and on mucosal surfaces, play significant roles in battling against influenza A viruses. To gain further insights into the host cellular responses of mouse mast cells with influenza A virus infection, such as the highly pathogenic avian influenza A virus H5N1 and the human pandemic influenza A H1N1, we employed high-throughput RNA sequencing to identify differentially expressed genes (DEGs) and related signaling pathways. Our data revealed that H1N1-infected mouse mast P815 cells presented more up- and down-regulated genes compared with H5N1-infected cells. Gene ontology analysis showed that the up-regulated genes in H1N1 infection were enriched for more degranulation-related cellular component terms and immune recognition-related molecular functions terms, while the up-regulated genes in H5N1 infection were enriched for more immune-response-related biological processes. Network enrichment of the KEGG pathway analysis showed that DEGs in H1N1 infection were specifically enriched for the FoxO and autophagy pathways. In contrast, DEGs in H5N1 infection were specifically enriched for the NF-κB and necroptosis pathways. Interestingly, we found that Nbeal2 could be preferentially activated in H5N1-infected P815 cells, where the level of Nbeal2 increased dramatically but decreased in HIN1-infected P815 cells. Nbeal2 knockdown facilitated inflammatory cytokine release in both H1N1- and H5N1-infected P815 cells and aggravated the apoptosis of pulmonary epithelial cells. In summary, our data described a transcriptomic profile and bioinformatic characterization of H1N-1 or H5N1-infected mast cells and, for the first time, established the crucial role of Nbeal2 during influenza A virus infection.
Collapse
|
4
|
De Conto F, Conversano F, Razin SV, Belletti S, Arcangeletti MC, Chezzi C, Calderaro A. Host-cell dependent role of phosphorylated keratin 8 during influenza A/NWS/33 virus (H1N1) infection in mammalian cells. Virus Res 2021; 295:198333. [PMID: 33556415 DOI: 10.1016/j.virusres.2021.198333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the involvement of keratin 8 during human influenza A/NWS/33 virus (H1N1) infection in semi-permissive rhesus monkey-kidney (LLC-MK2) and permissive human type II alveolar epithelial (A549) cells. In A549 cells, keratin 8 showed major expression and phosphorylation levels. Influenza A/NWS/33 virus was able to subvert keratin 8 structural organization at late stages of infection in both cell models, promoting keratin 8 phosphorylation in A549 cells at early phases of infection. Accordingly, partial colocalizations of the viral nucleoprotein with keratin 8 and its phosphorylated form were assessed by confocal microscopy at early stages of infection in A549 cells. The employment of chemical activators of phosphorylation resulted in structural changes as well as increased phosphorylation of keratin 8 in both cell models, favoring the influenza A/NWS/33 virus's replicative efficiency in A549 but not in LLC-MK2 cells. In A549 and human larynx epidermoid carcinoma (HEp-2) cells inoculated with respiratory secretions from pediatric patients positive for, respectively, influenza A virus or respiratory syncytial virus, the keratin 8 phosphorylation level had increased only in the case of influenza A virus infection. The results obtained suggest that in A549 cells the influenza virus is able to induce keratin 8 phosphorylation thereby enhancing its replicative efficiency.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences and Lomonosov Moscow State University, Moscow, Russia
| | - Silvana Belletti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Gao L, Ma X, Hu J, Zhang X, Chai T. Proteomic analysis of ESBL-producing Escherichia coli under bentonite condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22305-22311. [PMID: 31154643 DOI: 10.1007/s11356-019-05429-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The dissemination of extended spectrum beta-lactamases (ESBL) genes through gene transfer attracts wide attention. Bentonite is widely used as a feed additive in an animal-breeding environment. In order to obtain a better understanding of the effect of bentonite on Escherichia coli carrying ESBL gene, proteomic analysis was carried out to screen the key proteins. The results showed that a total of 31 proteins were differentially expressed, including 21 up-regulated proteins and 10 down-regulated proteins. These proteins were involved in biosynthetic process, metabolic process, stress response, transport, anaerobic respiration, proteolysis, hydrolase, protein folding, transcription, salvage, and other. The transcriptional level of four genes (mipA, gntY, tldD, and arcA) was in consensus with proteomic results. This study revealed the differentially expressed proteins involved when E. coli was incubated under bentonite and PBS condition, which implied the possibility that bentonite may promote the transfer of ESBL gene between E. coli.
Collapse
Affiliation(s)
- Lili Gao
- Department of Microbiology, College of Basic Medicine, Zunyi Medical University, Huichuan District, Zunyi, 563003, Guizhou, China.
| | - Xiaochun Ma
- Department of Microbiology, College of Basic Medicine, Zunyi Medical University, Huichuan District, Zunyi, 563003, Guizhou, China
| | - Jiaqing Hu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiaodan Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Tongjie Chai
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
6
|
Calvillo-Medina RP, Reyes-Grajeda JP, Barba-Escoto L, Bautista-Hernandez LA, Campos-Guillén J, Jones GH, Bautista-de Lucio VM. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. Microb Pathog 2019; 130:232-241. [DOI: 10.1016/j.micpath.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
|
7
|
Bedi S, Ono A. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly. Viruses 2019; 11:v11010046. [PMID: 30634554 PMCID: PMC6356976 DOI: 10.3390/v11010046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A Virus (IAV) is a respiratory virus that causes seasonal outbreaks annually and pandemics occasionally. The main targets of the virus are epithelial cells in the respiratory tract. Like many other viruses, IAV employs the host cell’s machinery to enter cells, synthesize new genomes and viral proteins, and assemble new virus particles. The cytoskeletal system is a major cellular machinery, which IAV exploits for its entry to and exit from the cell. However, in some cases, the cytoskeleton has a negative impact on efficient IAV growth. In this review, we highlight the role of cytoskeletal elements in cellular processes that are utilized by IAV in the host cell. We further provide an in-depth summary of the current literature on the roles the cytoskeleton plays in regulating specific steps during the assembly of progeny IAV particles.
Collapse
Affiliation(s)
- Sukhmani Bedi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Bhowmick R, Derakhshan T, Liang Y, Ritchey J, Liu L, Gappa-Fahlenkamp H. A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection. Tissue Eng Part A 2018; 24:1468-1480. [PMID: 29732955 DOI: 10.1089/ten.tea.2017.0449] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) claims ∼250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (two-dimensional [2D] cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineered Lung Model (3D-HTLM), we describe the 3D culture of primary human small airway epithelial cells (HSAEpCs) and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2. The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.
Collapse
Affiliation(s)
- Rudra Bhowmick
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Tahereh Derakhshan
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Yurong Liang
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Jerry Ritchey
- 3 Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Lin Liu
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | | |
Collapse
|
9
|
Zheng J, Perlman S. Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 2018; 28:43-52. [PMID: 29172107 PMCID: PMC5835172 DOI: 10.1016/j.coviro.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022]
Abstract
Respiratory viruses, especially influenza A viruses and coronaviruses such as MERS-CoV, represent continuing global threats to human health. Despite significant advances, much needs to be learned. Recent studies in virology and immunology have improved our understanding of the role of the immune system in protection and in the pathogenesis of these infections and of co-evolution of viruses and their hosts. These findings, together with sophisticated molecular structure analyses, omics tools and computer-based models, have helped delineate the interaction between respiratory viruses and the host immune system, which will facilitate the development of novel treatment strategies and vaccines with enhanced efficacy.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|