1
|
Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front Cell Infect Microbiol 2024; 14:1289396. [PMID: 38655285 PMCID: PMC11035753 DOI: 10.3389/fcimb.2024.1289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.
Collapse
Affiliation(s)
- Lukasz Korczak
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Halder G, Chaudhury BN, Mandal S, Denny P, Sarkar D, Chakraborty M, Khan UR, Sarkar S, Biswas B, Chakraborty A, Maiti S, Dutta S. Whole genome sequence-based molecular characterization of blood isolates of carbapenem-resistant Enterobacter cloacae complex from ICU patients in Kolkata, India, during 2017-2022: emergence of phylogenetically heterogeneous Enterobacter hormaechei subsp. xiangfangensis. Microbiol Spectr 2024; 12:e0352923. [PMID: 38385742 PMCID: PMC10986559 DOI: 10.1128/spectrum.03529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/14/2023] [Indexed: 02/23/2024] Open
Abstract
Blood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017-2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum β-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations.
Collapse
Affiliation(s)
- Gourab Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | | | - Priyanka Denny
- Collaborative Research Center for Infectious Diseases in India, Okayama University, JICA Building, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Deotima Sarkar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mandira Chakraborty
- Division of Microbiology, Calcutta Medical College, College Square, Kolkata, India
| | - Ujjwayini Ray Khan
- Division of Microbiology, Apollo Gleneagles Hospital, Phool Bagan, Kolkata, India
| | - Soma Sarkar
- Division of Microbiology, NRS Medical College, Sealdah, Kolkata, India
| | | | | | - Sourav Maiti
- Division of Microbiology, Ruby General Hospital, Kasba, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
3
|
Müller M, Wiencierz A, Gehringer C, Muigg V, Bassetti S, Siegemund M, Hinic V, Tschudin-Sutter S, Egli A. Factors associated with non-carbapenemase mediated carbapenem resistance of Gram-negative bacteria: a retrospective case-control study. Int Microbiol 2024; 27:597-606. [PMID: 37556067 PMCID: PMC10991015 DOI: 10.1007/s10123-023-00405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
Infections with carbapenemase-producing Gram-negative bacteria are related to increased morbidity and mortality, yet little is known regarding infections caused by non-beta-lactamase mediated carbapenem-resistant bacteria. Our objective was to identify risk factors for, and the clinical impact of infections caused by carbapenem-resistant carbapenemase-negative Enterobacterales and Pseudomonas aeruginosa. This retrospective matched case-control study was performed at the University Hospital of Basel, Switzerland, in 2016. We focused on other resistance mechanisms by excluding laboratory-confirmed carbapenemase-positive cases. Carbapenem resistance was set as the primary endpoint, and important risk factors were investigated by conditional logistic regression. The clinical impact of carbapenem resistance was estimated using regression models containing the resistance indicator as explanatory factor and adjusting for potential confounders. Seventy-five cases of infections with carbapenem-resistant, carbapenemase-negative bacteria were identified and matched with 75 controls with carbapenem-susceptible infections. The matched data set was well-balanced regarding age, gender, and comorbidity. Duration of prior carbapenem treatment (OR 1.15, [1.01, 1.31]) correlated with resistance to carbapenems. Our study showed that patients with carbapenem-resistant bacteria stayed 1.59 times (CI [0.81, 3.14]) longer in an ICU. The analyzed dataset did not provide evidence for strong clinical implications of resistance to carbapenems or increased mortality. The duration of prior carbapenem treatment seems to be a strong risk factor for the development of carbapenem resistance. The higher risk for a longer ICU stay could be a consequence of a carbapenem resistance. In contrast to carbapenemase-producers, the clinical impact of carbapenamase-negative, carbapenem-resistant strains may be limited. Trial registration: The study design was prospectively approved by the local Ethics Commission on 10.08.2017 (EKNZ BASEC 2017-00222).
Collapse
Affiliation(s)
- Marius Müller
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Andrea Wiencierz
- Clinical Trial Unit, University Hospital Basel, Basel, Switzerland
| | - Christian Gehringer
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Veronika Muigg
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Intensive Care Medicine, Department of Acute Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Vladimira Hinic
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland.
| |
Collapse
|
4
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
5
|
Rizi KS, Aryan E, Youssefi M, Ghazvini K, Meshkat Z, Amini Y, Safdari H, Derakhshan M, Farsiani H. Characterization of carbapenem-resistant Escherichia coli and Klebsiella: a role for AmpC-producing isolates. Future Microbiol 2023; 18:215-223. [PMID: 37129534 DOI: 10.2217/fmb-2021-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Aim: This study aimed to investigate the role of AmpC enzymes in carbapenem resistance among AmpC/extended-spectrum β-lactamase (ESBL)-producing clinical isolates of Escherichia coli and Klebsiella spp. Methods: Fifty-six bacterial strains that were AmpC producers were examined. The antibiotic susceptibility test was performed by the disk diffusion and E-test. The prevalence of the plasmid carbapenemase was determined using PCR. Results: The resistance to meropenem in the AmpC+/ESBL+ group was 64%, higher than that reported for the AmpC-/ESBL+ group. Ten isolates of the carbapenem-resistant AmpC producers were negative for carbapenemase-encoding genes. Conclusion: Carbapenem resistance among AmpC-producing isolates with negative results for carbapenemase-encoding genes potentially demonstrates the role of AmpC enzymes among these isolates.
Collapse
Affiliation(s)
- Kobra S Rizi
- Department of Microbiology & Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Amini
- Infectious Disease & Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hadi Safdari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Cawez F, Mercuri PS, Morales-Yãnez FJ, Maalouf R, Vandevenne M, Kerff F, Guérin V, Mainil J, Thiry D, Saulmont M, Vanderplasschen A, Lafaye P, Aymé G, Bogaerts P, Dumoulin M, Galleni M. Development of Nanobodies as Theranostic Agents against CMY-2-Like Class C β-Lactamases. Antimicrob Agents Chemother 2023; 67:e0149922. [PMID: 36892280 PMCID: PMC10112224 DOI: 10.1128/aac.01499-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
Three soluble single-domain fragments derived from the unique variable region of camelid heavy-chain antibodies (VHHs) against the CMY-2 β-lactamase behaved as inhibitors. The structure of the complex VHH cAbCMY-2(254)/CMY-2 showed that the epitope is close to the active site and that the CDR3 of the VHH protrudes into the catalytic site. The β-lactamase inhibition pattern followed a mixed profile with a predominant noncompetitive component. The three isolated VHHs recognized overlapping epitopes since they behaved as competitive binders. Our study identified a binding site that can be targeted by a new class of β-lactamase inhibitors designed on the sequence of the paratope. Furthermore, the use of mono- or bivalent VHH and rabbit polyclonal anti-CMY-2 antibodies enables the development of the first generation of enzyme-linked immunosorbent assay (ELISA) for the detection of CMY-2 produced by CMY-2-expressing bacteria, irrespective of resistotype.
Collapse
Affiliation(s)
- Frédéric Cawez
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Paola Sandra Mercuri
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Francisco Javier Morales-Yãnez
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Rita Maalouf
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Marylène Vandevenne
- InBios, Center for Protein Engineering, ROBOTEIN, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Frederic Kerff
- InBioS, Center for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Virginie Guérin
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Jacques Mainil
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Damien Thiry
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), Ciney, Belgium
| | - Alain Vanderplasschen
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
- Immunology-Vaccinology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Gabriel Aymé
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Pierre Bogaerts
- National Reference Center for Antibiotic-Resistant Gram-Negative Bacilli, Department of Clinical Microbiology, CHU UCL Namur, Yvoir, Belgium
| | - Mireille Dumoulin
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Endo YT, Aoki K, Hamada M, Kamura HN, Ishii Y, Tateda K. Full-length whole-genome sequencing analysis of emerged meropenem-resistant mutants during long-term in vitro exposure to meropenem for borderline meropenem-susceptible carbapenemase-producing and non-carbapenemase-producing Enterobacterales. J Antimicrob Chemother 2022; 78:209-215. [PMID: 36374518 DOI: 10.1093/jac/dkac376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Molecular analysis of meropenem-resistant mechanisms in mutants emerging from long-term in vitro meropenem exposure to borderline meropenem-susceptible carbapenemase-producing Enterobacterales (CPE) and non-CPE. METHODS Escherichia coli TUM13867 harbouring both blaIMP-6- and blaCTX-M-2-carrying IncN plasmid and Citrobacter koseri TUM13189 with blaCTX-M-2-carrying chromosome were used. Meropenem MIC was 1 mg/L against both strains. Each strain was cultured in the hollow-fibre infection model (HFIM) to approximately 1 × 106 colony formation unit (cfu)/mL, and meropenem 1 g q8h treatment was initiated. Then, changes in total and meropenem-resistant populations were observed for 124 h. Meropenem resistance mechanisms were analysed using full-length whole-genome sequencing (WGS), reverse-transcription quantitative PCR and digital PCR. RESULTS Meropenem reduced TUM13867 and TUM13189 to approximately 5 and 2 log10 cfu/mL, respectively, at 2 h after initiation, but regrowth was observed at 24 h. The meropenem-resistant mutant emergence frequency at 120 and 124 h was 4.4 × 10-4 for TUM13867 and 7.6 × 10-1 for TUM13189. Meropenem MIC of the mutants derived from TUM13867 (TUM20902) and TUM13189 (TUM20903) increased 4- and 16-fold, respectively. TUM20902, which harboured pMTY20902_IncN plasmid with a 27 505-bp deletion that included blaCTX-M-2, and blaIMP-6 showed 4.21-fold higher levels of transcription than the parental strain. TUM20903 had a 49 316-bp deletion that included ompC and a replicative increase of blaCTX-M-2 to three copies. CONCLUSIONS Molecular analysis including full-length WGS revealed that the resistance mechanisms of meropenem-resistant mutants that emerged during long-term in vitro meropenem exposure were increased blaIMP-6 transcripts in CPE and increased blaCTX-M-2 transcripts due to gene triplication and OmpC loss resulting from ompC deletion in non-CPE.
Collapse
Affiliation(s)
- Yuko Tsutsumi Endo
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan.,Infection, Vaccine Medical Group, Medical Affairs Department, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Masakaze Hamada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Haruka Nakagawa Kamura
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Hu K, Zhang J, Zou J, Zeng L, Li J, Wang J, Long W, Zhang X. Molecular characterization of NDM-1-producing carbapenem-resistant E. cloacae complex from a tertiary hospital in Chongqing, China. Front Cell Infect Microbiol 2022; 12:935165. [PMID: 36004335 PMCID: PMC9393607 DOI: 10.3389/fcimb.2022.935165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe aim of this study was to clarify the molecular characterization of NDM-1-producing carbapenem-resistant Enterobacter cloacae complex (CREL) at a teaching hospital in Chongqing, China.MethodsAntimicrobial susceptibility and resistance genes were analyzed. Epidemiological relationship was analyzed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Conjugation experiments were performed to determine the transferability of plasmids. Whole-genome sequencing (WGS) of strains was implemented, and the genetic environment of the blaNDM-1- and mcr-9-carrying plasmids was analyzed.ResultsA total of 10 blaNDM-1-positive CREL isolates were identified. All isolates harbored multiple resistance genes. ECL68 and ECL78 co-produce blaNDM-1 and mcr-9. Among the four different sequence types (STs) detected, ST1466 was assigned as a novel ST. Six isolates exhibited highly similar PFGE patterns. Conjugation assay proved that all plasmids containing blaNDM-1 or mcr-9 could be transferred to the recipient Escherichia coli. WGS indicated that blaNDM-1 genes were carried by diverse plasmids, including IncHI2/IncN, IncX3, and one unclassified plasmid type. The backbone structure of these plasmids is involved in replication initiation (repAB), partitioning (parABM), and conjugation/type IV secretion (tra/virB). Analysis of the genetic environment showed that blaNDM-1 in three plasmids exhibited a highly similar structure to protype Tn125. Co-existence of blaNDM-1 and the colistin resistance gene mcr-9 was detected in the two isolates, ECL68 and ECL78. In ECL68, blaNDM-1 and mcr-9 were present on the same plasmid while located in two separate plasmids in ECL78. The genetic environment of mcr-9 was organized as IS26-wbuC-mcr-9-IS903-pcoS-pcoE-rcnA-rcnR, and the two-component system encoding genes qseC and qseB was not found in two plasmids, which could explain mcr-9-harboring strains’ colistin susceptibility.ConclusionsWe first report a nosocomial outbreak of NDM-1-producing E. cloacae complex ST177 in China. Conjugative plasmids contributed to the horizontal transfer of antibiotic resistance genes. The prevalence and even coexistence of blaNDM-1 and mcr-9 may further threaten public health. Our results highlight further surveillance for blaNDM-1, and mcr-9 is essential to prevent its dissemination.
Collapse
Affiliation(s)
- Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jingbo Zou
- Department of Microbiology, Yongchuan District Center for Disease Control and Prevention of Chongqing, Chongqing, China
| | - Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Molecular biology, Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoli Zhang,
| |
Collapse
|
9
|
Dekić Rozman S, Butorac A, Bertoša R, Hrenović J, Markeš M. Loss of thermotolerance in antibiotic-resistant Acinetobacter baumannii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1581-1593. [PMID: 33719791 DOI: 10.1080/09603123.2021.1898550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Bacterium Acinetobacter baumannii is a leading cause of nosocomial infections. The occurrence of antibiotic-resistant A. baumannii isolates outside hospitals suggests that monitoring of this pathogen in environmental samples is needed. Survival of pandrug-resistant A. baumannii was followed on selective plates with and without carbapenems in water and soil. After a few days of starvation, A. baumannii lost the ability to be cultivated at 44°C on plates supplemented with carbapenems. Once cultivated on plates without carbapenems and/or at 36°C, A. baumannii could grow again at 44°C in the presence of carbapenems. Comparative proteomic analysis revealed that impaired membrane integrity and reduced function of efflux pumps due to elevated temperature combined with antibiotic exposure were the main reasons for this phenomenon. Loss of thermotolerance in the presence of antibiotics points to the need for temperature adjustment in long-term monitoring of A. baumannii in environmental samples, to avoid the underestimation of viable bacteria.
Collapse
Affiliation(s)
| | - Ana Butorac
- BIOCentre Ltd., Bioanalytical Laboratory II - Proteomics, Zagreb, Croatia
| | - Rea Bertoša
- BIOCentre Ltd., Bioanalytical Laboratory II - Proteomics, Zagreb, Croatia
| | - Jasna Hrenović
- Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Marina Markeš
- BIOCentre Ltd., Bioanalytical Laboratory II - Proteomics, Zagreb, Croatia
| |
Collapse
|
10
|
Farfour E, Dortet L, Guillard T, Chatelain N, Poisson A, Mizrahi A, Fournier D, Bonnin RA, Degand N, Morand P, Janvier F, Fihman V, Corvec S, Broutin L, Le Brun C, Yin N, Héry-Arnaud G, Grillon A, Bille E, Jean-Pierre H, Amara M, Jaureguy F, Isnard C, Cattoir V, Diedrich T, Flevin E, Merens A, Jacquier H, Vasse M. Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France. Pathogens 2022; 11:pathogens11030356. [PMID: 35335681 PMCID: PMC8949168 DOI: 10.3390/pathogens11030356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
In the context of increasing antimicrobial resistance in Enterobacterales, the management of these UTIs has become challenging. We retrospectively assess the prevalence of antimicrobial resistance in Enterobacterales isolates recovered from urinary tract samples in France, between 1 September 2017, to 31 August 2018. Twenty-six French clinical laboratories provided the susceptibility of 134,162 Enterobacterales isolates to 17 antimicrobials. The most frequent species were E. coli (72.0%), Klebsiella pneumoniae (9.7%), Proteus mirabilis (5.8%), and Enterobacter cloacae complex (2.9%). The overall rate of ESBL-producing Enterobacterales was 6.7%, and ranged from 1.0% in P. mirabilis to 19.5% in K. pneumoniae, and from 3.1% in outpatients to 13.6% in long-term care facilities. Overall, 4.1%, 9.3% and 10.5% of the isolates were resistant to cefoxitin, temocillin and pivmecillinam. Cotrimoxazole was the less active compound with 23.4% resistance. Conversely, 4.4%, 12.9%, and 14.3% of the strains were resistant to fosfomycin, nitrofurantoin, and ciprofloxacin. However, less than 1% of E. coli was resistant to fosfomycin and nitrofurantoin. We identified several trends in antibiotics resistances among Enterobacterales isolates recovered from the urinary tract samples in France. Carbapenem-sparing drugs, such as temocillin, mecillinam, fosfomycin, cefoxitin, and nitrofurantoin, remained highly active, including towards ESBL-E.
Collapse
Affiliation(s)
- Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France;
- Correspondence: ; Tel.: +33-1-46-25-75-51
| | - Laurent Dortet
- Team RESIST, Laboratoire de Bactériologie-Hygiène, Assistance Publique des Hôpitaux de Paris, Faculté de Médecine, CHU de Bicêtre, Université Paris-Saclay, UMR 1184, 95270 Le Kremlin-Bicêtre, France; (L.D.); (R.A.B.)
| | - Thomas Guillard
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, Hôpital Robert Debré, CHU Reims, Université de Reims-Champagne-Ardenne, 51000 Reims, France;
| | | | | | - Assaf Mizrahi
- Service de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, 75015 Paris, France;
- Institut Micalis UMR 1319, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, AgroParisTech, 92290 Châtenay Malabry, France
| | - Damien Fournier
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, 25000 Besançon, France;
| | - Rémy A. Bonnin
- Team RESIST, Laboratoire de Bactériologie-Hygiène, Assistance Publique des Hôpitaux de Paris, Faculté de Médecine, CHU de Bicêtre, Université Paris-Saclay, UMR 1184, 95270 Le Kremlin-Bicêtre, France; (L.D.); (R.A.B.)
| | - Nicolas Degand
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, 06200 Nice, France;
| | - Philippe Morand
- Service de Bactériologie, AP-HP Centre-Université de Paris, Site Cochin, 75014 Paris, France;
| | | | - Vincent Fihman
- Bacteriology and Infection Control Unit, Department of Prevention, Diagnosis, and Treatment of Infections, AP-HP Centre, Henri-Mondor University Hospital, 94000 Creteil, France;
| | - Stéphane Corvec
- Inserm, Service de Bactériologie et des Contrôles Microbiolgoiques, CHU de Nantes, Université de Nantes, 44000 Nantes, France;
| | - Lauranne Broutin
- Service de Bactériologie et d’Hygiène Hospitalière, Unité de Microbiologie Moléculaire et Séquençage, CHU de Poitiers, 86000 Poitiers, France;
| | - Cécile Le Brun
- Service de Bactériologie, Virologie et Hygiène Hospitalière, CHU de Tours, 37000 Tours, France;
| | - Nicolas Yin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles—Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
- Department of Microbiology, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
| | - Geneviève Héry-Arnaud
- Inserm UMR 1078 GGB, Unité de Bactériologie, Hôpital La Cavale Blanche, CHRU de Brest, Université de Brest, CEDEX, 29609 Brest, France;
| | - Antoine Grillon
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, 67000 Strasbourg, France;
| | - Emmanuelle Bille
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, AP-HP Centre-Université de Paris, 75015 Paris, France;
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France;
- Maladies Infectieuses et Vecteurs—Écologie, Génétique, Évolution et Contrôle, Centre National pour la Recherche Scientifique, Institut de Recherche pour le Développement, Université de Montpellier, 34000 Montpellier, France
| | - Marlène Amara
- Service de Biologie, Unité de Microbiologie, CH de Versailles, 78150 Le Chesnay, France;
| | - Francoise Jaureguy
- Service de Microbiologie Clinique, Groupe Hospitalier Paris Seine Saint-Denis, AP-HP Centre, CHU Avicenne, 93000 Bobigny, France;
| | - Christophe Isnard
- Department of Microbiology, CHU de Caen Normandie, Normandie University, UNICAEN, 14000 Caen, France;
| | - Vincent Cattoir
- Service de Bactériologie-Hygiène, CHU de Rennes, 35033 Rennes, France;
| | - Tristan Diedrich
- Service de Microbiologie, CH de Valenciennes, 59300 Valenciennes, France;
| | - Emilie Flevin
- Laboratoire de Biologie, CH de Dieppe, 76200 Dieppe, France;
| | - Audrey Merens
- SSA (French Military Health Service), Bégin Military Teaching Hospital, 94160 Saint-Mandé, France;
| | - Hervé Jacquier
- Service de Bactériologie-Virologie, AP-HP Centre, Hôpital Lariboisière, 75010 Paris, France;
| | - Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France;
| | | |
Collapse
|
11
|
Flannery DD, Chiotos K, Gerber JS, Puopolo KM. Neonatal multidrug-resistant gram-negative infection: epidemiology, mechanisms of resistance, and management. Pediatr Res 2022; 91:380-391. [PMID: 34599280 PMCID: PMC8819496 DOI: 10.1038/s41390-021-01745-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Infants admitted to the neonatal intensive care unit, particularly those born preterm, are at high risk for infection due to the combination of an immature immune system, prolonged hospitalization, and frequent use of invasive devices. Emerging evidence suggests that multidrug-resistant gram-negative (MDR-GN) infections are increasing in neonatal settings, which directly threatens recent and ongoing advances in contemporary neonatal care. A rising prevalence of antibiotic resistance among common neonatal pathogens compounds the challenge of optimal management of suspected and confirmed neonatal infection. We review the epidemiology of MDR-GN infections in neonates in the United States and internationally, with a focus on extended-spectrum β-lactamase (ESBL)-producing Enterobacterales and carbapenem-resistant Enterobacterales (CRE). We include published single-center studies, neonatal collaborative reports, and national surveillance data. Risk factors for and mechanisms of resistance are discussed. In addition, we discuss current recommendations for empiric antibiotic therapy for suspected infections, as well as definitive treatment options for key MDR organisms. Finally, we review best practices for prevention and identify current knowledge gaps and areas for future research. IMPACT: Surveillance and prevention of MDR-GN infections is a pediatric research priority. A rising prevalence of MDR-GN neonatal infections, specifically ESBL-producing Enterobacterales and CRE, compounds the challenge of optimal management of suspected and confirmed neonatal infection. Future studies are needed to understand the impacts of MDR-GN infection on neonatal morbidity and mortality, and studies of current and novel antibiotic therapies should include a focus on the pharmacokinetics of such agents among neonates.
Collapse
Affiliation(s)
- Dustin D Flannery
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Kathleen Chiotos
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey S Gerber
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen M Puopolo
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
12
|
Sarangi J, Matsuo N, Nonogaki R, Hayashi M, Kawamura K, Suzuki M, Jin W, Tamai K, Ogawa M, Wachino JI, Kimura K, Yagi T, Arakawa Y. Molecular epidemiology of Enterobacter cloacae complex isolates with reduced carbapenem susceptibility recovered by blood culture. Jpn J Infect Dis 2021; 75:41-48. [PMID: 34193664 DOI: 10.7883/yoken.jjid.2021.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Enterobacter cloacae complex (ECC) is one of the most common causes of bacteremia and leads to poor clinical outcomes. The aim of this study was to clarify the antimicrobial susceptibility profiles and genetic backgrounds of non-carbapenemase-producing reduced-carbapenem-susceptible (RCS) ECC blood isolates in Japan using agar dilution antimicrobial susceptibility testing, whole-genome sequencing, and quantitative polymerase chain reaction for assays of ampC, ompC and ompF transcripts. Forty-two ECC blood isolates were categorized into RCS and carbapenem-susceptible groups based on imipenem minimum inhibitory concentration. RCS ECC blood isolates belonged to distinct species and sequence types and produced varying class C β-lactamases. The E. roggenkampii, E. asburiae, and E. bugandensis isolates belonged only to the RCS group. Some E. hormaecheii ssp. steigerwaltii isolates of the RCS group exhibited AmpC overexpression caused by amino acid substitutions in AmpD and AmpR along with ompF gene downregulation. These findings suggest that non-carbapenemase-producing RCS ECC blood isolates are genetically diverse.
Collapse
Affiliation(s)
- Jayathilake Sarangi
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan
| | - Nao Matsuo
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Japan
| | - Rina Nonogaki
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Japan
| | - Michiko Hayashi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Japan
| | - Kumiko Kawamura
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University, School of Medicine, Japan
| | - Wanchun Jin
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan
| | | | | | - Jun-Ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan.,Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Japan
| |
Collapse
|
13
|
Majewski P, Gutowska A, Sacha P, Schneiders T, Talalaj M, Majewska P, Zebrowska A, Ojdana D, Wieczorek P, Hauschild T, Kowalczuk O, Niklinski J, Radziwon P, Tryniszewska E. Expression of AraC/XylS stress response regulators in two distinct carbapenem-resistant Enterobacter cloacae ST89 biotypes. J Antimicrob Chemother 2021; 75:1146-1150. [PMID: 31960042 DOI: 10.1093/jac/dkz569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The growing incidence of MDR Gram-negative bacteria is a rapidly emerging challenge in modern medicine. OBJECTIVES We sought to establish the role of intrinsic drug-resistance regulators in combination with specific genetic mutations in 11 Enterobacter cloacae isolates obtained from a single patient within a 7 week period. METHODS The molecular characterization of eight carbapenem-resistant and three carbapenem-susceptible E. cloacae ST89 isolates included expression-level analysis and WGS. Quantitative PCR included: (i) chromosomal cephalosporinase gene (ampC); (ii) membrane permeability factor genes, e.g. ompF, ompC, acrA, acrB and tolC; and (iii) intrinsic regulatory genes, e.g. ramA, ampR, rob, marA and soxS, which confer reductions in antibiotic susceptibility. RESULTS In this study we describe the influence of the alterations in membrane permeability (ompF and ompC levels), intrinsic regulatory genes (ramA, marA, soxS) and intrinsic chromosomal cephalosporinase AmpC on reductions in carbapenem susceptibility of E. cloacae clinical isolates. Interestingly, only the first isolate possessed the acquired VIM-4 carbapenemase, which has been lost in subsequent isolates. The remaining XDR E. cloacae ST89 isolates presented complex carbapenem-resistance pathways, which included perturbations in permeability of bacterial membranes mediated by overexpression of ramA, encoding an AraC/XylS global regulator. Moreover, susceptible isolates differed significantly from other isolates in terms of marA down-regulation and soxS up-regulation. CONCLUSIONS Molecular mechanisms of resistance among carbapenem-resistant E. cloacae included production of acquired VIM-4 carbapenemase, significant alterations in membrane permeability due to increased expression of ramA, encoding an AraC/XylS global regulator, and the overproduction of chromosomal AmpC cephalosporinase.
Collapse
Affiliation(s)
- Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Gutowska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Mariola Talalaj
- Department of Anaesthesiology and Intensive Care with Postoperative Unit, University Children's Clinical Hospital, Bialystok, Poland
| | | | | | - Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland.,Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Nepal S, Maaß S, Grasso S, Cavallo FM, Bartel J, Becher D, Bathoorn E, van Dijl JM. Proteomic Charting of Imipenem Adaptive Responses in a Highly Carbapenem Resistant Clinical Enterobacter roggenkampii Isolate. Antibiotics (Basel) 2021; 10:antibiotics10050501. [PMID: 33924830 PMCID: PMC8145422 DOI: 10.3390/antibiotics10050501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Gram-negative bacteria belonging to the Enterobacter cloacae complex are increasingly implicated in difficult-to-treat nosocomial infections, as exemplified by a recently characterized highly carbapenem-resistant clinical Enterobacter roggenkampii isolate with sequence type (ST) 232. While mechanisms of carbapenem resistance are well-understood, little is known about the responses of highly drug-resistant bacteria to these antibiotics. Our present study was therefore aimed at charting the responses of the E. roggenkampii ST232 isolate to the carbapenem imipenem, using a ‘stable isotope labeling of amino acids in cell culture’ approach for quantitative mass spectrometry. This unveiled diverse responses of E. roggenkampii ST232 to imipenem, especially altered levels of proteins for cell wall biogenesis, central carbon metabolism, respiration, iron–sulfur cluster synthesis, and metal homeostasis. These observations suggest a scenario where imipenem-challenged bacteria reduce metabolic activity to save resources otherwise used for cell wall biogenesis, and to limit formation of detrimental reactive oxygen species at the cytoplasmic membrane due to respiration and Fenton chemistry. We consider these observations important, because knowing the adaptive responses of a highly resistant bacterium of the E. cloacae complex to last-resort antibiotics, such as imipenem, provides a ‘sneak preview’ into the future development of antibiotic resistance in this emerging group of pathogens.
Collapse
Affiliation(s)
- Suruchi Nepal
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.N.); (S.G.); (F.M.C.); (E.B.)
| | - Sandra Maaß
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (S.M.); (J.B.); (D.B.)
| | - Stefano Grasso
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.N.); (S.G.); (F.M.C.); (E.B.)
| | - Francis M. Cavallo
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.N.); (S.G.); (F.M.C.); (E.B.)
| | - Jürgen Bartel
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (S.M.); (J.B.); (D.B.)
| | - Dörte Becher
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (S.M.); (J.B.); (D.B.)
| | - Erik Bathoorn
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.N.); (S.G.); (F.M.C.); (E.B.)
| | - Jan Maarten van Dijl
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.N.); (S.G.); (F.M.C.); (E.B.)
- Correspondence: ; Tel.: +31-50-3615187
| |
Collapse
|
15
|
Transcriptome-based design of antisense inhibitors potentiates carbapenem efficacy in CRE Escherichia coli. Proc Natl Acad Sci U S A 2020; 117:30699-30709. [PMID: 33199638 DOI: 10.1073/pnas.1922187117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, the prevalence of carbapenem-resistant Enterobacteriaceae (CRE) has risen substantially, and the study of CRE resistance mechanisms has become increasingly important for antibiotic development. Although much research has focused on genomic resistance factors, relatively few studies have examined CRE pathogens through changes in gene expression. In this study, we examined the gene expression profile of a CRE Escherichia coli clinical isolate that is sensitive to meropenem but resistant to ertapenem to explore transcriptomic contributions to resistance and to identify gene knockdown targets for carbapenem potentiation. We sequenced total and short RNA to analyze the gene expression response to ertapenem or meropenem treatment and found significant expression changes in genes related to motility, maltodextrin metabolism, the formate hydrogenlyase complex, and the general stress response. To validate these findings, we used our laboratory's Facile Accelerated Specific Therapeutic (FAST) platform to create antisense peptide nucleic acids (PNAs), gene-specific molecules designed to inhibit protein translation. PNAs were designed to inhibit the pathways identified in our transcriptomic analysis, and each PNA was then tested in combination with each carbapenem to assess its effect on the antibiotics' minimum inhibitory concentrations. We observed significant PNA-antibiotic interaction with five different PNAs across six combinations. Inhibition of the genes hycA, dsrB, and bolA potentiated carbapenem efficacy in CRE E. coli, whereas inhibition of the genes flhC and ygaC conferred added resistance. Our results identify resistance factors and demonstrate that transcriptomic analysis is a potent tool for designing antibiotic PNA.
Collapse
|
16
|
Yang X, Zeng J, Zhou Q, Yu X, Zhong Y, Wang F, Du H, Nie F, Pang X, Wang D, Fan Y, Bai T, Xu Y. Elevating NagZ Improves Resistance to β-Lactam Antibiotics via Promoting AmpC β-Lactamase in Enterobacter cloacae. Front Microbiol 2020; 11:586729. [PMID: 33250874 PMCID: PMC7672007 DOI: 10.3389/fmicb.2020.586729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Enterobacter cloacae complex (ECC), one of the most common opportunistic pathogens causing multiple infections in human, is resistant to β-lactam antibiotics mainly due to its highly expressed chromosomal AmpC β-lactamase. It seems that regulation of chromosomal AmpC β-lactamase is associated with peptidoglycan recycling. However, underlying mechanisms are still poorly understood. In this study, we confirmed that NagZ, a glycoside hydrolase participating in peptidoglycan recycling in Gram-negative bacteria, plays a crucial role in developing resistance of E. cloacae (EC) to β-lactam antibiotics by promoting expression of chromosomal AmpC β-lactamase. Our data shows that NagZ was significantly up-regulated in resistant EC (resistant to at least one type of the third or fourth generation cephalosporins) compared to susceptible EC (susceptible to all types of the third and fourth generation cephalosporins). Similarly, the expression and β-lactamase activity of ampC were markedly enhanced in resistant EC. Moreover, ectopic expression of nagZ enhanced ampC expression and resistance to β-lactam antibiotics in susceptible EC. To further understand functions of NagZ in β-lactam resistance, nagZ-knockout EC model (ΔnagZ EC) was constructed by homologous recombination. Conversely, ampC mRNA and protein levels were down-regulated, and resistance to β-lactam antibiotics was attenuated in ΔnagZ EC, while specific complementation of nagZ was able to rescue ampC expression and resistance in ΔnagZ EC. More interestingly, NagZ and its hydrolyzates 1,6-anhydromuropeptides (anhMurNAc) could induce the expression of other target genes of AmpR (a global transcriptional factor), which suggested that the promotion of AmpC by NagZ is mediated AmpR activated by anhMurNAc in EC. In conclusion, these findings provide new elements for a better understanding of resistance in EC, which is crucial for the identification of novel potential drug targets.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zeng
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qin Zhou
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xuejing Yu
- Department of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, United States
| | - Yuanxiu Zhong
- Department of Biotechnology, Chengdu Medical College, Chengdu, China
| | - Fuying Wang
- Department of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, United States
| | - Hongfei Du
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Nie
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xueli Pang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dan Wang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yingzi Fan
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tingting Bai
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
17
|
Alizadeh N, Ahangarzadeh Rezaee M, Samadi Kafil H, Hasani A, Soroush Barhaghi MH, Milani M, Yeganeh Sefidan F, Memar MY, Lalehzadeh A, Ghotaslou R. Evaluation of Resistance Mechanisms in Carbapenem-Resistant Enterobacteriaceae. Infect Drug Resist 2020; 13:1377-1385. [PMID: 32494169 PMCID: PMC7229782 DOI: 10.2147/idr.s244357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) is a major concern leading to morbidity and mortality in the world. CRE often is becoming a cause of therapeutic failure in both hospital and community-acquired infections. AIM This study aimed to investigate the resistance mechanisms of CRE by phenotypic and molecular methods. MATERIALS AND METHODS Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Antimicrobial susceptibility testing was carried out using phenotypic methods. The carbapenem resistance mechanisms including efflux pump hyperexpression, AmpC overproduction, carbapenemase genes, and deficiency in OmpK35 and OmpK36 were determined by phenotypic and molecular methods, respectively. RESULTS Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Amikacin was found to be the most effective drug against CRE isolates. All isolates were resistant to imipenem and meropenem by the micro-broth dilution. AmpC overproduction was observed in all Enterobacter spp. and three K. pneumoniae isolates. No efflux pump activity was found. Carba NP test and Modified Hodge Test could find carbapenemase in 59 (98%) isolates and 57 (95%) isolates, respectively. The most common carbapenemase gene was bla OXA-48-like (72.8%) followed by bla NDM (50.8%), bla IMP (18.6%), bla VIM (11.8%), and bla KPC (6.7%). The ompK35 and ompK36 genes were not detected in 10 and 7 K. pneumoniae isolates, respectively. CONCLUSION The amikacin is considered as a very efficient antibiotic for the treatment of CRE isolates in our region. Carbapenemase production and overproduction of AmpC are the main carbapenem resistance mechanisms in CRE isolates. Finally, Carba NP test is a rapid and reliable test for early detection of carbapenemase-producing isolates.
Collapse
Affiliation(s)
- Naser Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | | | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Medical, University of Tabriz, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Mohammad Yousef Memar
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| |
Collapse
|
18
|
Hayakawa K, Nakano R, Hase R, Shimatani M, Kato H, Hasumi J, Doi A, Sekiya N, Nei T, Okinaka K, Kasahara K, Kurai H, Nagashima M, Miyoshi-Akiyama T, Kakuta R, Yano H, Ohmagari N. Comparison between IMP carbapenemase-producing Enterobacteriaceae and non-carbapenemase-producing Enterobacteriaceae: a multicentre prospective study of the clinical and molecular epidemiology of carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 2020; 75:697-708. [PMID: 31789374 DOI: 10.1093/jac/dkz501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) are classified as carbapenemase-producing Enterobacteriaceae (CPE) and non-CPE; the majority of CPE in Japan produce IMP carbapenemase. OBJECTIVES We evaluated the clinico-epidemiological and microbiological information and effects of IMP-type carbapenemase production in CRE. METHODS Patients with isolations of CRE (MICs of meropenem ≥2 mg/L, imipenem ≥2 mg/L or cefmetazole ≥64 mg/L) from August 2016 to March 2018 were included. Microbiological analyses and WGS were conducted and clinical parameters were compared between groups. Independent predictors for the isolation of CPE from patients were identified by logistic regression. For comparing clinical outcomes, a stabilized inverse probability weighting method was used to conduct propensity score-adjusted analysis. RESULTS Ninety isolates (27 CPE and 63 non-CPE) were collected from 88 patients (25 CPE and 63 non-CPE). All CPE tested positive for IMP carbapenemase. Antibiotic resistance (and the presence of resistance genes) was more frequent in the CPE group than in the non-CPE group. Independent predictors for CPE isolation were residence in a nursing home or long-term care facility, longer prior length of hospital stay (LOS), use of a urinary catheter and/or nasogastric tube, dependent functional status and exposure to carbapenem. Although in-hospital and 30 day mortality rates were similar between the two groups, LOS after CRE isolation was longer in the CPE group. CONCLUSIONS IMP-CPE were associated with prolonged hospital stays and had different clinical and microbiological characteristics compared with non-CPE. Tailored approaches are necessary for the investigational and public health reporting, and clinical and infection prevention perspectives for IMP-CPE and non-CPE.
Collapse
Affiliation(s)
- Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Ryota Hase
- Department of Infectious Diseases, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Michitsugu Shimatani
- Department of Infectious Diseases and Infection Control, Hamamatsu Medical Center, Shizuoka, Japan
| | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Kanagawa, Japan
| | - Jumpei Hasumi
- Department of Pediatrics, Saku Medical Center, Nagano, Japan
| | - Asako Doi
- Division of Infectious Diseases, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Noritaka Sekiya
- Department of Infection Prevention and Control, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Takahito Nei
- Department of Infection Prevention and Control, Nippon Medical School Hospital, Tokyo, Japan
| | - Keiji Okinaka
- Division of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, Nara, Japan
| | - Hanako Kurai
- Division of Infectious Diseases, Shizuoka Cancer Center, Shizuoka, Japan
| | - Maki Nagashima
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Risako Kakuta
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Chiotos K, Hayes M, Gerber JS, Tamma PD. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J Pediatric Infect Dis Soc 2020; 9:56-66. [PMID: 31872226 PMCID: PMC7047006 DOI: 10.1093/jpids/piz085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Infections due to carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes. Optimal treatment strategies for CRE infections continue to evolve. A lack of pediatric-specific comparative effectiveness data, uncertain pediatric dosing regimens for several agents, and a relative lack of new antibiotics with pediatric indications approved by the US Food and Drug Administration (FDA) collectively present unique challenges for children. In this review, we provide a framework for antibiotic treatment of CRE infections in children, highlighting relevant microbiologic considerations and summarizing available data related to the evaluation of FDA-approved antibiotics (as of September 2019) with CRE activity, including carbapenems, ceftazidime-avibactam, meropenem-vaborbactam, imipenem/cilastatin-relebactam, polymyxins, tigecycline, eravacycline, and plazomicin.
Collapse
Affiliation(s)
- Kathleen Chiotos
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Molly Hayes
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pranita D Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Mishra M, Panda S, Barik S, Sarkar A, Singh DV, Mohapatra H. Antibiotic Resistance Profile, Outer Membrane Proteins, Virulence Factors and Genome Sequence Analysis Reveal Clinical Isolates of Enterobacter Are Potential Pathogens Compared to Environmental Isolates. Front Cell Infect Microbiol 2020; 10:54. [PMID: 32154188 PMCID: PMC7047878 DOI: 10.3389/fcimb.2020.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
Outer membrane proteins (OMPs) of gram-negative bacteria play an important role in mediating antibacterial resistance, bacterial virulence and thus affect pathogenic ability of the bacteria. Over the years, prevalence of environmental antibiotic resistant organisms, their transmission to clinics and ability to transfer resistance genes, have been studied extensively. Nevertheless, how successful environmental bacteria can be in establishing as pathogenic bacteria under clinical setting, is less addressed. In the present study, we utilized an integrated approach of investigating the antibiotic resistance profile, presence of outer membrane proteins and virulence factors to understand extent of threat posed due to multidrug resistant environmental Enterobacter isolates. Also, we investigated clinical Enterobacter isolates and compared the results thereof. Results of the study showed that multidrug resistant environmental Enterobacter isolates lacked OmpC, lacked cell invasion abilities and exhibited low reactive oxygen species (ROS) production in neutrophils. In contrast, clinical isolates possessed OmpF, exhibited high invasive and adhesive property and produced higher amounts of ROS in neutrophils. These attributes indicated limited pathogenic potential of environmental Enterobacter isolates. Informations obtained from whole genome sequence of two representative bacterial isolates from environment (DL4.3) and clinical sources (EspIMS6) corroborated well with the observed results. Findings of the present study are significant as it highlights limited fitness of multidrug resistant environmental Enterobacter isolates.
Collapse
Affiliation(s)
- Mitali Mishra
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sasmita Panda
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Susmita Barik
- Trident School of Biotech Sciences, Trident Academy of Creative and Technology, Bhubaneswar, India
| | - Arup Sarkar
- Trident School of Biotech Sciences, Trident Academy of Creative and Technology, Bhubaneswar, India
| | - Durg Vijai Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Harapriya Mohapatra
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
21
|
Tian X, Huang C, Ye X, Jiang H, Zhang R, Hu X, Xu D. Carbapenem-Resistant Enterobacter cloacae Causing Nosocomial Infections in Southwestern China: Molecular Epidemiology, Risk Factors, and Predictors of Mortality. Infect Drug Resist 2020; 13:129-137. [PMID: 32021327 PMCID: PMC6959490 DOI: 10.2147/idr.s234678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
Background The emergence and spread of carbapenem-resistant Enterobacter cloacae (CR-ECL) have posed a serious threat to clinical management. This retrospective study assessed the epidemiological characteristics of CR-ECL to explore the risk factors and predictors of mortality in patients with CR-ECL infection. Methods We performed a retrospective 1:2 case-control study of hospitalized patients from January 2014 to December 2017. A total of 85 consecutive unique CR-ECL strains comprised the case group, and 170 matched patients with carbapenem-susceptible Enterobacter cloacae (CS-ECL) infection at the same period as the control group. Isolates were screened for potential resistance genes by polymerase chain reaction (PCR) and molecular typing was performed by multilocus sequence typing (MLST). Results The results of drug resistance gene detection showed that blaNDM-1 was the most common carbapenem resistance gene. The MLST results showed that ST51 was the predominant epidemic type, followed by ST88. ICU admission (P<0.001), drainage tube (P=0.002), central venous catheter (P=0.005), and carbapenem exposure (P=0.003) were independent risk factors for CR-ECL infection. Significant predictors for 28-day mortality included solid tumours (P=0.005), septic shock (P=0.019), and mechanical ventilation (P=0.027). Conclusion Our study indicated that ST51 and ST88, which are closely related, were the predominant epidemic types of CR-ECL producing blaNDM-1 in southwestern China. Strengthening the surveillance of patients with solid tumours, septic shock and mechanical ventilation is an urgent need.
Collapse
Affiliation(s)
- Xiaolang Tian
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Changwu Huang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Xiaoli Ye
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Hongyan Jiang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Rufang Zhang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Xiaofang Hu
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Dongshuang Xu
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| |
Collapse
|
22
|
Ferreira RJ, Kasson PM. Antibiotic Uptake Across Gram-Negative Outer Membranes: Better Predictions Towards Better Antibiotics. ACS Infect Dis 2019; 5:2096-2104. [PMID: 31593635 DOI: 10.1021/acsinfecdis.9b00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crossing the Gram-negative bacterial membrane poses a major barrier to antibiotic development, as many small molecules that can biochemically inhibit key bacterial processes are rendered microbiologically ineffective by their poor cellular uptake. The outer membrane is the major permeability barrier for many drug-like molecules, and the chemical properties that enable efficient uptake into mammalian cells fail to predict bacterial uptake. We have developed a computational method for accurate prospective prediction of outer membrane uptake of drug-like molecules, which we combine with a new medium-throughput experimental assay of outer membrane vesicle swelling. Parallel molecular dynamics simulations of compound uptake through Escherichia coli (E. coli) OmpF are used to successfully and quantitatively predict experimental permeabilities measured via either outer membrane swelling or prior liposome-swelling measurements. These simulations are analyzed using an inhomogeneous solubility-diffusion model to yield predictions of permeability. For most polar molecules we test, outer membrane permeability also correlates well with whole-cell uptake. The ability to accurately predict and measure outer membrane uptake of a wide variety of small molecules will enable simpler determination of which molecular scaffolds and which derivatives are most promising prior to extensive chemical synthesis. It will also assist in formulating a more systematic understanding of the chemical determinants of outer membrane permeability.
Collapse
Affiliation(s)
- Ricardo J. Ferreira
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Peter M. Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
- Departments of Biomedical Engineering and Molecular Physiology and Biological Physics, University of Virginia, Box 800886, Charlottesville, Virginia 22908, United States
| |
Collapse
|
23
|
Cai Y, Chen C, Zhao M, Yu X, Lan K, Liao K, Guo P, Zhang W, Ma X, He Y, Zeng J, Chen L, Jia W, Tang YW, Huang B. High Prevalence of Metallo-β-Lactamase-Producing Enterobacter cloacae From Three Tertiary Hospitals in China. Front Microbiol 2019; 10:1610. [PMID: 31447788 PMCID: PMC6697253 DOI: 10.3389/fmicb.2019.01610] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/27/2019] [Indexed: 11/17/2022] Open
Abstract
Enterobacter cloacae has recently emerged as one of the most common carbapenem-resistant Enterobacteriaceae. The emergence and spread of metallo-β-lactamase-producing E. cloacae have posed an immediate threat globally. Here, we investigated the molecular characteristics of 84 carbapenem-resistant Enterobacter cloacae (CREL) collected from three tertiary hospitals in China between 2012 and 2016. Species identification and antimicrobial susceptibility testing were performed using a VITEK-2 system. Carbapenems, polymyxins B, and tigecycline were tested by broth microdilution method. The carbapenem in activation method (CIM) and cefoxitin three-dimensional test were used to detect carbapenemase and AmpC β-lactamase, respectively. Isolates were screened for β-lactam resistance genes by PCR, and expression of ompC and ompF was determined by qRT-PCR. Genetic relatedness was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), while selected isolates were subjected to whole-genome sequencing. Among the 84 CREL isolates, 50 (59.5%) were detected as carbapenemase producers. NDM-1 was the dominant carbapenemase (80.0%), followed by IMP-26 (8.0%) and IMP-4 (6.0%). Notably, we identified the first NDM-1 and IMP-1 co-producing E. cloacae, carrying plasmids of several incompatibility (Inc) groups, including IncHI2, IncHI2A, and IncN. Most isolates showed decreased expression of ompC and/or ompF, and contained a broad distribution of ESBLs and AmpC β-lactamases. These findings suggested that different molecular mechanisms, including carbapenemase, ESBL and/or AmpC plus loss of porins, have contributed to carbapenem resistance. The blaNDM−1-harboring plasmids contained highly conserved gene environment around blaNDM−1 (blaNDM−1-bleMBL-trpF-dsbD-cutA1-groES-groEL), which could be associated with the potential dissemination of blaNDM−1. IMP-type MBL was located within a variety of integrons and usually contained various gene cassettes encoding multidrug resistance. These isolates produced 54 different pulsotypes, and were classified into 42 STs by MLST. Nineteen blaNDM−1-positive E. cloacae isolates obtained from Ningxia had the same pulsotype (PFGE type 1), belonging to ST78 within clonal complex 74 (CC74). The plasmid-based replicon typing indicated that IncX3 plasmids mediated the dissemination of blaNDM−1 among these homologous strains. This is the first report on the outbreak of NDM-1-producing E. cloacae ST78 with contribution of IncX3 plasmids in Northwestern China. There's an immediate need to intensify surveillance attentively to prevent and control the further spread of NDM-1 in China.
Collapse
Affiliation(s)
- Yimei Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mei Zhao
- Department of Laboratory Medicine, Ningxia Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Lan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizheng Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xingyan Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuting He
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liang Chen
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Wei Jia
- Department of Laboratory Medicine, Ningxia Hospital of Ningxia Medical University, Yinchuan, China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, United States
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Izdebski R, Baraniak A, Zabicka D, Machulska M, Urbanowicz P, Fiett J, Literacka E, Bojarska K, Kozinska A, Zieniuk B, Hryniewicz W, Gniadkowski M. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013-January 2017. J Antimicrob Chemother 2019; 73:620-625. [PMID: 29237086 DOI: 10.1093/jac/dkx457] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 11/14/2022] Open
Abstract
Objectives To analyse OXA-48 (OXA-48/181)-type carbapenemase-producing Enterobacteriaceae reported in Poland from 2013 until January 2017. Methods Bacterial isolates were typed by PFGE and MLST. Genes coding for OXA-48/181 types and other β-lactamases were amplified and sequenced. Mobile elements with blaOXA-48/181-like genes were PCR mapped. blaOXA-48/181-carrying plasmids were characterized by nuclease S1-hybridization profiling, transfer assays and PCR-based replicon typing, while the chromosomal location of the genes was confirmed by the I-CeuI analysis. Results Fifty-four isolates from 52 patients in 20 hospitals (14 cities) were included, in 14 cases having probable foreign origins indicated. The organisms were genetically diverse and represented numerous pandemic clones, including Klebsiella pneumoniae ST395 (n = 23), ST11, ST15 and ST101, Escherichia coli ST38, ST410 and ST648, and Enterobacter cloacae complex ST78. These produced OXA-48 (n = 49), OXA-181 (n = 4) or OXA-232 (n = 1). One of five K. pneumoniae ST395 pulsotypes caused a multicentre outbreak with 18 cases, which significantly contributed to the total number of patients. Depending on the variant, the blaOXA-48/181-like genes were parts of the Tn1999-, Tn2013- or Tn2016-like transposons, with blaOXA-48 found in an ISEcp1-associated module (Tn2016-like) for the first time. Three genotypes, including E. coli ST38, had chromosomal blaOXA-48 genes, while others carried transmissible IncL (∼60 kb; blaOXA-48; n = 30), IncM (∼80-95 kb; blaOXA-48; n = 4), IncX3 (∼50 kb; blaOXA-181; n = 4) or non-typeable (∼90-160 kb; blaOXA-48 or blaOXA-232) plasmids. Conclusions Even though OXA-48/181 producers seem to occur infrequently in Poland, their epidemiology has been marked by various phenomena, namely multiple imports, several limited transmissions plus one larger clonal outbreak, and possible plasmid transfers.
Collapse
Affiliation(s)
- R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - D Zabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - M Machulska
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - J Fiett
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - E Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - K Bojarska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - A Kozinska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - B Zieniuk
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | | |
Collapse
|
25
|
Nepal S, Bonn F, Grasso S, Stobernack T, de Jong A, Zhou K, Wedema R, Rosema S, Becher D, Otto A, Rossen JW, van Dijl JM, Bathoorn E. An ancient family of mobile genomic islands introducing cephalosporinase and carbapenemase genes in Enterobacteriaceae. Virulence 2019; 9:1377-1389. [PMID: 30101693 PMCID: PMC6177240 DOI: 10.1080/21505594.2018.1509666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The exchange of mobile genomic islands (MGIs) between microorganisms is often mediated by phages, which may provide benefits to the phage’s host. The present study started with the identification of Enterobacter cloacae, Klebsiella pneumoniae and Escherichia coli isolates with exceptional cephalosporin and carbapenem resistance phenotypes from patients in a neonatal ward. To identify possible molecular connections between these isolates and their β-lactam resistance phenotypes, the respective bacterial genome sequences were compared. This unveiled the existence of a family of ancient MGIs that were probably exchanged before the species E. cloacae, K. pneumoniae and E. coli emerged from their common ancestry. A representative MGI from E. cloacae was named MIR17-GI, because it harbors the novel β-lactamase gene variant blaMIR17. Importantly, our observations show that the MIR17-GI-like MGIs harbor genes associated with high-level resistance to cephalosporins. Among them, MIR17-GI stands out because MIR17 also displays carbapenemase activity. As shown by mass spectrometry, the MIR17 carbapenemase is among the most abundantly expressed proteins of the respective E. cloacae isolate. Further, we show that MIR17-GI-like islands are associated with integrated P4-like prophages. This implicates phages in the spread of cephalosporin and carbapenem resistance amongst Enterobacteriaceae. The discovery of an ancient family of MGIs, mediating the spread of cephalosporinase and carbapenemase genes, is of high clinical relevance, because high-level cephalosporin and carbapenem resistance have serious implications for the treatment of patients with enterobacteriaceal infections.
Collapse
Affiliation(s)
- Suruchi Nepal
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Florian Bonn
- b Institute for Microbiology , Ernst-Moritz-Arndt-University Greifswald , Greifswald , Germany
| | - Stefano Grasso
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Tim Stobernack
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Anne de Jong
- c Department of Molecular Genetics , University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute , Groningen , The Netherlands
| | - Kai Zhou
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,d State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital , Zhejiang University , Hangzhou , China
| | - Ronald Wedema
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Sigrid Rosema
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Dörte Becher
- b Institute for Microbiology , Ernst-Moritz-Arndt-University Greifswald , Greifswald , Germany
| | - Andreas Otto
- b Institute for Microbiology , Ernst-Moritz-Arndt-University Greifswald , Greifswald , Germany
| | - John W Rossen
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Erik Bathoorn
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| |
Collapse
|
26
|
Nitro-Carba test, a novel and simple chromogenic phenotypic method for rapid screening of carbapenemase-producing Enterobacteriaceae. J Glob Antimicrob Resist 2019; 18:22-25. [PMID: 30668995 DOI: 10.1016/j.jgar.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES In this study, a rapid and simple chromogenic method for screening of carbapenemase-producing Enterobacteriaceae (CPE), namely the Nitro-Carba test (NCT), was developed. METHODS The NCT was validated using a total of 31 carbapenemase-producing isolates [9 Klebsiella pneumoniae carbapenemase (KPC), 11 metallo-β-lactamase (MBL) and 11 OXA-48] and 56 non-carbapenemase-producing isolates. The assay relies on the hydrolysis of nitrocefin by carbapenemases in the presence of carbapenem antibiotics. Carbapenemases were extracted with lysis buffer prior to addition to wells with and without imipenem (IPM), meropenem (MEM) and ertapenem (ETP). Following addition of nitrocefin, a change in colour from yellow to red, indicating carbapenemase production, was observed within 20min. The susceptibility profiles of each bacterial isolate were also investigated. RESULTS The NCT detected all 31 CPE within a timeframe of only 10s to 12min. All carbapenemase-producers hydrolysed nitrocefin in all wells. No colour change in wells with carbapenems was observed in non-carbapenemase-producers. The sensitivity for all three carbapenems was 100%, whilst the specificity of IPM, MEM and ETP was 64.3%, 91.1% and 100%, respectively. IPM, MEM and ETP had minimum inhibitory concentrations (MICs) against all carbapenemase-producing strains ranging from 0.5μg/mL to ≥256μg/mL, 0.25μg/mL to ≥256μg/mL and 1μg/mL to ≥256μg/mL, respectively. OXA-48-producing isolates showed lower MICs compared with MBL- and KPC-producing isolates. CONCLUSION This assay is a promising method for detecting CPE rapidly. The NCT is a simple and reliable method capable of detecting CPE even in carbapenem-susceptible strains.
Collapse
|
27
|
Ito A, Nishikawa T, Ota M, Ito-Horiyama T, Ishibashi N, Sato T, Tsuji M, Yamano Y. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J Antimicrob Chemother 2018; 73:3049-3052. [PMID: 30188999 PMCID: PMC6198743 DOI: 10.1093/jac/dky317] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives The siderophore cephalosporin cefiderocol possesses in vitro activity against MDR Gram-negative bacteria. The stability of cefiderocol against serine- and metallo-type carbapenemases has been reported previously, but little is known about how cefiderocol interacts with chromosomal AmpC β-lactamases. We investigated a number of features of cefiderocol, namely antibacterial activity against AmpC overproducers, stability against AmpC β-lactamases and propensity for AmpC induction using Pseudomonas aeruginosa and Enterobacter cloacae. Methods MICs were determined by broth microdilution according to CLSI guidelines. The MIC of cefiderocol was determined in iron-depleted CAMHB. Hydrolysis of the antibiotics was determined by monitoring the changes in the absorbance in the presence of AmpC β-lactamase, and AmpC induction was evaluated by double disc diffusion and nitrocefin degradation assays. Results The MICs of ceftazidime and cefepime for PAO1 increased 4- to 16-fold with inactivation of either ampD or dacB, whereas cefiderocol MICs were little affected by these inactivations (<2-fold increase). Cefiderocol has 17- and 740-fold lower affinity (higher Ki) to AmpCs of P. aeruginosa SR24-12 and E. cloacae P99, respectively, compared with ceftazidime. Both disc diffusion and nitrocefin degradation assays indicated that cefiderocol did not induce AmpC β-lactamases of P. aeruginosa PAO1 and ATCC 27853 and E. cloacae ATCC 13047, whereas imipenem did. Conclusions Cefiderocol showed in vitro activity against the AmpC-overproducing strains, low affinity for chromosomal AmpC β-lactamases, and a low propensity of temporal induction of AmpC β-lactamases of P. aeruginosa and E. cloacae. These features relating to chromosomal AmpC could explain the potent antibacterial activity of cefiderocol against drug-resistant strains producing AmpC β-lactamases.
Collapse
Affiliation(s)
| | | | - Merime Ota
- Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Uechi K, Tada T, Shimada K, Nakasone I, Kirikae T, Fujita J. Emergence of a carbapenem-resistant and colistin-heteroresistant Enterobacter cloacae clinical isolate in Japan. J Infect Chemother 2018; 25:285-288. [PMID: 30279112 DOI: 10.1016/j.jiac.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
A carbapenem-resistant and colistin-heteroresistant clinical isolate of Enterobacter cloacae was obtained from an inpatient in Okinawa, Japan. The minimum inhibitory concentrations of both imipenem and meropenem were 32 μg/mL. The isolate showed heteroresistance to colistin using the Etest method and resistance to colistin using the broth microdilution method. It had a disrupted ompC and a mutation in the promoter region of blaACT-2, but did not harbor any genes encoding carbapenemase. The disruption of ompC and the mutation in blaACT-2 was associated with the carbapenem resistance of this isolate. This isolate also had mutations in pmrAB and phoPQ encoding two-component regulatory systems, which may be associated with colistin heteroresistance.
Collapse
Affiliation(s)
- Kohei Uechi
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University Hospital of the Ryukyus, Okinawa, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan; Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kayo Shimada
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Isamu Nakasone
- Control and Prevention of Infectious Disease, University Hospital of the Ryukyus, Okinawa, Japan
| | - Teruo Kirikae
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan; Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Jiro Fujita
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
29
|
Shahbazi S, Asadi Karam MR, Habibi M, Talebi A, Bouzari S. Distribution of extended-spectrum β-lactam, quinolone and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. J Glob Antimicrob Resist 2018; 14:118-125. [PMID: 29581075 DOI: 10.1016/j.jgar.2018.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Antimicrobial resistance among uropathogenic Escherichia coli (UPEC) is increasing. The aim of this study was to evaluate antimicrobial resistance in UPEC isolates and its correlation with virulence factors. METHODS A total of 120 E. coli isolates were collected from patients with urinary tract infection in Tehran, Iran. Biofilm formation and antimicrobial susceptibility were determined by phenotypic tests. The combination disk diffusion test and modified Hodge test (MHT) were performed for phenotypic detection of extended-spectrum β-lactamases (ESBLs) and carbapenemases, respectively. PCR was used for the detection of virulence genes, ESBL-encoding genes, and quinolone (qnr) and carbapenem resistance genes. Pulsed-field gel electrophoresis (PFGE) was performed to explore the genetic relatedness among isolates. RESULTS Most isolates exhibited biofilm formation, and different frequencies of virulence genes were observed. There was a high rate of resistance, especially multidrug resistance, to most of the antimicrobial agents tested. Phenotypically, 67.5% of the isolates produced an ESBL and were resistant to different antimicrobial classes. In total, 83.3% of the isolates harboured ESBL genes, especially blaTEM and blaCTX-M, and 32.5% were positive for the quinolone resistance genes qnrS and qnrB. All isolates were negative for carbapenemases by the MHT and PCR. These results indicate the association between the presence of various virulence genes and antimicrobial susceptibility. PFGE analysis showed that there was great clonal diversity among the selected isolates, with 17 isolates divided into five clusters. CONCLUSIONS These results indicate that the high antimicrobial resistance among UPEC isolates is alarming and requires urgent attention.
Collapse
Affiliation(s)
- Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|