1
|
Spatola Rossi T, Gallia M, Erijman L, Figuerola E. Biotic and abiotic factors acting on community assembly in parallel anaerobic digestion systems from a brewery wastewater treatment plant. ENVIRONMENTAL TECHNOLOGY 2025; 46:135-150. [PMID: 38686914 DOI: 10.1080/09593330.2024.2343797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Anaerobic digestion is a complex microbial process that mediates the transformation of organic waste into biogas. The performance and stability of anaerobic digesters relies on the structure and function of the microbial community. In this study, we asked whether the deterministic effect of wastewater composition outweighs the effect of reactor configuration on the structure and dynamics of anaerobic digester archaeal and bacterial communities. Biotic and abiotic factors acting on microbial community assembly in two parallel anaerobic digestion systems, an upflow anaerobic sludge blanket digestor (UASB) and a closed digester tank with a solid recycling system (CDSR), from a brewery WWTP were analysed utilizing 16S rDNA and mcrA amplicon sequencing and genome-centric metagenomics. This study confirmed the deterministic effect of the wastewater composition on bacterial community structure, while the archaeal community composition resulted better explained by organic loading rate (ORL) and volatile free acids (VFA). According to the functions assigned to the differentially abundant metagenome-assembled genomes (MAGs) between reactors, CDSR was enriched in genes related to methanol and methylamines methanogenesis, protein degradation, and sulphate and alcohol utilization. Conversely, the UASB reactor was enriched in genes associated with carbohydrate and lipid degradation, as well as amino acid, fatty acid, and propionate fermentation. By comparing interactions derived from the co-occurrence network with predicted metabolic interactions of the prokaryotic communities in both anaerobic digesters, we conclude that the overall community structure is mainly determined by habitat filtering.
Collapse
Affiliation(s)
| | - Mateo Gallia
- IB3- Institute of Biosciences, Biotechnology and Translational Biology- University of Buenos Aires Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr Héctor N. Torres' (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eva Figuerola
- IB3- Institute of Biosciences, Biotechnology and Translational Biology- University of Buenos Aires Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Kumar G, Kallscheuer N, Jogler M, Wiegand S, Heuer A, Boedeker C, Rohde M, Jogler C. Stratiformator vulcanicus gen. nov., sp. nov., a marine member of the family Planctomycetaceae isolated from a red biofilm in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie Van Leeuwenhoek 2023; 116:995-1007. [PMID: 37584762 PMCID: PMC10509075 DOI: 10.1007/s10482-023-01860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
A novel planctomycetal strain, designated Pan189T, was isolated from biofilm material sampled close to Panarea Island in the Tyrrhenian Sea. Cells of strain Pan189T are round grain rice-shaped, form pink colonies and display typical planctomycetal characteristics including asymmetric cell division through polar budding and presence of crateriform structures. Cells bear a stalk opposite to the division pole and fimbriae cover the cell surface. Strain Pan189T has a mesophilic (optimum at 24 °C) and neutrophilic (optimum at pH 7.5) growth profile, is aerobic and heterotrophic. Under laboratory-scale cultivation conditions, it reached a generation time of 102 h (µmax = 0.0068 h-1), which places the strain among the slowest growing members of the phylum Planctomycetota characterized so far. The genome size of the strain is with 5.23 Mb at the lower limit among the family Planctomycetaceae (5.1-8.9 Mb). Phylogenetically, the strain represents a novel genus and species in the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. We propose the name Stratiformator vulcanicus gen. nov., sp. nov. for the novel taxon, that is represented by the type strain Pan189T (= DSM 101711 T = CECT 30699 T).
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
3
|
Howe KL, Seitz KW, Campbell LG, Baker BJ, Thrash JC, Rabalais NN, Rogener MK, Joye SB, Mason OU. Metagenomics and metatranscriptomics reveal broadly distributed, active, novel methanotrophs in the Gulf of Mexico hypoxic zone and in the marine water column. FEMS Microbiol Ecol 2022; 99:6909064. [PMID: 36520069 PMCID: PMC9874027 DOI: 10.1093/femsec/fiac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 12/23/2022] Open
Abstract
The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.
Collapse
Affiliation(s)
- Kathryn L Howe
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, United States
| | - Kiley W Seitz
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, 78373, Port Aransas, United States
| | - Lauren G Campbell
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, United States
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, 78373, Port Aransas, United States,Department of Integrative Biology, University of Texas at Austin, 78712, Austin, United States
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, 90089, Los Angeles, United States
| | - Nancy N Rabalais
- Department of Oceanography and Coastal Sciences, Louisiana State University, 70803, Baton Rouge, United States,Louisiana Universities Marine Consortium, 70344, Chauvin, United States
| | - Mary-Kate Rogener
- Department of Marine Sciences, University of Georgia, 30602, Athens, United States
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 30602, Athens, United States
| | - Olivia U Mason
- Corresponding author: Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, United States. E-mail:
| |
Collapse
|
4
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rubinisphaera margarita sp. nov., a novel planctomycete isolated from marine sediments collected in the Portuguese north coast. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylum
Planctomycetota
is constituted by bacteria with unique features that are well adapted to a vast range of habitats. Here, we describe a novel planctomycete isolated from marine sediments collected on a beach in Matosinhos (Portugal) using an iChip-based culturing technique. Strain ICM_H10T forms beige-coloured colonies in modified M14 medium and its cells are spherical to ovoid in shape, stalked, rosette-forming and showing motility in a phase of the life cycle. Transmission electron microscopy observations showed a typical planctomycetal cell plan and cell division by budding. This strain requires salt for growth and grows in the range of 2.0–5.0 % (w/v) NaCl, from 20 to 37 °C, within a pH of 6.0–9.0 and is able to use diverse nitrogen and carbon sources. It is heterotrophic, aerobic and capable of microaerobic growth. This strain has a genome size of approximately 6.0 Mb and a G+C content of 58.1 mol%. A 16S rRNA gene-based phylogenetic analysis supports the association of strain ICM_H10T to the phylum
Planctomycetota
and the family
Planctomycetaceae
, as it shares only 96.8 and 96.4% similarity to its closest relatives
Rubinisphaera italica
Pan54T and
Rubinisphaera brasiliensis
IFAM 1448T, respectively. Other phylogenetic markers also support the separation of this strain into a novel species. Morphological, physiological and genomic comparisons between strain ICM_H10T and its closest relatives strongly suggest that ICM_H10T represents a new species of the genus
Rubinisphaera
, for which we propose the name Rubinisphaera margarita sp. nov., with ICM_H10T (=CECT 30326T=LMG 32234T) as type strain.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Olga Maria Lage
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
A genomic overview including polyphasic taxonomy of Thalassoroseus pseudoceratinae gen. nov., sp. nov. isolated from a marine sponge, Pseudoceratina sp. Antonie van Leeuwenhoek 2022; 115:843-856. [PMID: 35587321 DOI: 10.1007/s10482-022-01738-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
A pink-coloured, salt- and alkali-tolerant planctomycetal strain (JC658T) with oval to pear-shaped, motile, aerobic, Gram-negative stained cells was isolated from a marine sponge, Pseudoceratina sp. Strain JC658T shares the highest 16S rRNA gene sequence identity with Maioricimonas rarisocia Mal4T (< 89.2%) in the family Planctomycetaceae. The genomic analysis of the new strain indicates its biotechnological potential for the production of various industrially important enzymes, notably sulfatases and carbohydrate-active enzymes (CAZymes), and also potential antimicrobial compounds. Several genes encoding restriction-modification (RM) and CRISPR-CAS systems are also present. NaCl is obligate for growth, of which strain JC658T can tolerate a concentration up to 6% (w/v). Optimum pH and temperature for growth are 8.0 (range 7.0-9.0) and 25 ºC (range 10-40 °C), respectively. The major respiratory quinone of strain JC658T is MK6. Major fatty acids are C16:1ω7c/C16:1ω6c, C18:0 and C16:0. Major polar lipids are phosphatidylcholine, phosphatidyl-dimethylethanolamine and phosphatidyl-monomethylethanolamine. The genomic size of strain JC658T is 7.36 Mb with a DNA G + C content of 54.6 mol%. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that strain JC658T belongs to a novel genus and constitutes a novel species within the family Planctomycetaceae, for which we propose the name Thalassoroseus pseudoceratinae gen. nov., sp. nov. The novel species is represented by the type strain JC658T (= KCTC 72881 T = NBRC 114371 T).
Collapse
|
6
|
Kruppa O, Czermak P. Screening for Biofilm-Stimulating Factors in the Freshwater Planctomycete Planctopirus limnophila to Improve Sessile Growth in a Chemically Defined Medium. Microorganisms 2022; 10:microorganisms10040801. [PMID: 35456851 PMCID: PMC9028447 DOI: 10.3390/microorganisms10040801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/26/2022] Open
Abstract
Planctomycetes such as Planctopirus limnophila offer a promising source of bioactive molecules, particularly when they switch from planktonic to sessile growth, but little is known about the corresponding biosynthetic gene clusters and how they are activated. We therefore screened for factors that promote sessile growth and biofilm formation to enable the cultivation of P. limnophila in a fixed-bed reactor. We carried out screening in microtiter plates focusing on biofilm formation and changes in optical density in response to various C:N ratios, metal ions, and oxidative stress. We used MTT assays and crystal violet staining to quantify biofilm formation. Positive factors were then validated in a fixed-bed bioreactor. The initial screen showed that D1ASO medium supplemented with NH4Cl to achieve a C:N ratio of 5.7:1, as well as 50 µM FeSO4 or CuSO4, increased the biofilm formation relative to the control medium. Exposure to H2O2 did not affect cell viability but stimulated biofilm formation. However, the same results were not replicated in the fixed-bed bioreactor, probably reflecting conditions that are unique to this environment such as the controlled pH and more vigorous aeration. Although we were able to cultivate P. limnophila in a fixed-bed bioreactor using a chemically defined medium, the factors that stimulate biofilm formation and inhibit planktonic growth were only identified in microtiter plates and further evaluation is required to establish optimal growth conditions in the bioreactor system.
Collapse
Affiliation(s)
- Oscar Kruppa
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany;
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany;
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, 35390 Giessen, Germany
- Correspondence:
| |
Collapse
|
7
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
8
|
Kruppa OC, Gerlach D, Fan R, Czermak P. Development of a chemically defined medium for Planctopirus limnophila to increase biomass production. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM. Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms 2021; 9:2078. [PMID: 34683399 PMCID: PMC8541047 DOI: 10.3390/microorganisms9102078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain;
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
10
|
Lai C, Sun Y, Guo Y, Cai Q, Yang P. A novel integrated bio-reactor of moving bed and constructed wetland (MBCW) for domestic wastewater treatment and its microbial community diversity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2653-2668. [PMID: 31902307 DOI: 10.1080/09593330.2019.1709904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
An MBBR and CW combo bio-reactor (MBCW) was designed as a novel hybrid process for simultaneous organic, nitrogen and phosphate removal through the long-term operation. The effect of the internal recycling rate (IRR), hydraulic retention time (HRT) and chemical oxygen demand/total nitrogen (C/N) ratio were all discussed, and the recommended values were 5:1, 12 h and >6, respectively. A higher C/N ratio was a key factor for achieving a higher TN removal. The mixed biocarrier system was realized by inoculating porous polymer carriers (PPC) and cylindrical polyethylene carriers (CPC) and achieving a higher organic biodegradation and nitrification rate compared to a single carrier system. Microorganism activities and plants' uptake or utilization both contributed to the nutrient removal in a constructed wetland. High-throughput sequencing results revealed an abundant microbial diversity and a distinct microbial distribution in the whole system where Flavobacterium (14.2%), Acinetobacter (12.87%) and Rhodobacter (10.83%) dominated on PPC, Terrimonas (8.88%), Reyranella (6.61%) and Rubinisphaera (5.63%) dominated on CPC, Comamonas (4.18%), Gemmobacter (4.02%) and Hydrogenophaga (3.97%) dominated on CWs, as well as Citrobacter (53.13%) on suspended floc.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
11
|
Kallscheuer N, Wiegand S, Kohn T, Boedeker C, Jeske O, Rast P, Müller RW, Brümmer F, Heuer A, Jetten MSM, Rohde M, Jogler M, Jogler C. Cultivation-Independent Analysis of the Bacterial Community Associated With the Calcareous Sponge Clathrina clathrus and Isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., Belonging to the Barely Studied Class Phycisphaerae in the Phylum Planctomycetes. Front Microbiol 2020; 11:602250. [PMID: 33414774 PMCID: PMC7783415 DOI: 10.3389/fmicb.2020.602250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division.
Collapse
Affiliation(s)
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Ralph-Walter Müller
- Faculty for Energy-, Process- and Bioengineering, University of Stuttgart, Stuttgart, Germany
| | - Franz Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Description of Polystyrenella longa gen. nov., sp. nov., isolated from polystyrene particles incubated in the Baltic Sea. Antonie Van Leeuwenhoek 2020; 113:1851-1862. [PMID: 32239304 PMCID: PMC7716846 DOI: 10.1007/s10482-020-01406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/15/2020] [Indexed: 11/28/2022]
Abstract
Planctomycetes occur in almost all aquatic ecosystems on earth. They have a remarkable cell biology, and members of the orders Planctomycetales and Pirellulales feature cell division by polar budding, perform a lifestyle switch from sessile to motile cells and have an enlarged periplasmic space. Here, we characterise a novel planctomycetal strain, Pla110T, isolated from the surface of polystyrene particles incubated in the Baltic Sea. After phylogenetic analysis, the strain could be placed in the family Planctomycetaceae. Strain Pla110T performs cell division by budding, has crateriform structures and grows in aggregates or rosettes. The strain is a chemoheterotroph, grows under mesophilic and neutrophilic conditions, and exhibited a doubling time of 21 h. Based on our phylogenetic and morphological characterisation, strain Pla110T (DSM 103387T = LMG 29693T) is concluded to represent a novel species belonging to a novel genus, for which we propose the name Polystyrenella longa gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
13
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary. Antonie Van Leeuwenhoek 2020; 113:1863-1875. [PMID: 32239303 PMCID: PMC7717058 DOI: 10.1007/s10482-020-01407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023]
Abstract
A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
14
|
Boersma AS, Kallscheuer N, Wiegand S, Rast P, Peeters SH, Mesman RJ, Heuer A, Boedeker C, Jetten MSM, Rohde M, Jogler M, Jogler C. Alienimonas californiensis gen. nov. sp. nov., a novel Planctomycete isolated from the kelp forest in Monterey Bay. Antonie Van Leeuwenhoek 2020; 113:1751-1766. [PMID: 31802338 DOI: 10.1007/s10482-019-01367-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
Abstract
Planctomycetes are environmentally and biotechnologically important bacteria and are often found in association with nutrient-rich (marine) surfaces. To allow a more comprehensive understanding of planctomycetal lifestyle and physiology we aimed at expanding the collection of axenic cultures with new isolates. Here, we describe the isolation and genomic and physiological characterisation of strain CA12T obtained from giant bladder kelp (Macrocystis pyrifera) in Monterey Bay, California, USA. 16S rRNA gene sequence and whole genome-based phylogenetic analysis showed that strain CA12T clusters within the family Planctomycetaceae and that it has a high 16S rRNA sequence similarity (82.3%) to Planctomicrobium piriforme DSM 26348T. The genome of strain CA12T has a length of 5,475,215 bp and a G+C content of 70.1%. The highest growth rates were observed at 27 °C and pH 7.5. Using different microscopic methods, we could show that CA12T is able to divide by consecutive polar budding, without completing a characteristic planctomycetal lifestyle switch. Based on our data, we suggest that the isolated strain represents a novel species within a novel genus. We thus propose the name Alienimonas gen. nov. with Alienimonas californiensis sp. nov. as type species of the novel genus and CA12T as type strain of the novel species.
Collapse
Affiliation(s)
- Alje S Boersma
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Patrick Rast
- Leibniz Institute DSMZ Braunschweig, Brunswick, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ Braunschweig, Brunswick, Germany
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mareike Jogler
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
- Leibniz Institute DSMZ Braunschweig, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Wiegand S, Jogler M, Boedeker C, Heuer A, Rast P, Peeters SH, Jetten MSM, Kaster AK, Rohde M, Kallscheuer N, Jogler C. Additions to the genus Gimesia: description of Gimesia alba sp. nov., Gimesia algae sp. nov., Gimesia aquarii sp. nov., Gimesia aquatilis sp. nov., Gimesia fumaroli sp. nov. and Gimesia panareensis sp. nov., isolated from aquatic habitats of the Northern Hemisphere. Antonie Van Leeuwenhoek 2020; 113:1999-2018. [PMID: 33231764 PMCID: PMC7716864 DOI: 10.1007/s10482-020-01489-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Thirteen novel planctomycetal strains were isolated from five different aquatic sampling locations. These comprise the hydrothermal vent system close to Panarea Island (Italy), a biofilm on the surface of kelp at Monterey Bay (CA, USA), sediment and algae on Mallorca Island (Spain) and Helgoland Island (Germany), as well as a seawater aquarium in Braunschweig, Germany. All strains were shown to belong to the genus Gimesia. Their genomes cover a size range from 7.22 to 8.29 Mb and have a G+C content between 45.1 and 53.7%. All strains are mesophilic (Topt 26-33 °C) with generation times between 12 and 32 h. Analysis of fatty acids yielded palmitic acid (16:0) and a fatty acid with the equivalent chain length of 15.817 as major compounds. While five of the novel strains belong to the already described species Gimesia maris and Gimesia chilikensis, the other strains belong to novel species, for which we propose the names Gimesia alba (type strain Pan241wT = DSM 100744T = LMG 31345T = CECT 9841T = VKM B-3430T), Gimesia algae (type strain Pan161T = CECT 30192T = STH00943T = LMG 29130T), Gimesia aquarii (type strain V144T = DSM 101710T = VKM B-3433T), Gimesia fumaroli (type strain Enr17T = DSM 100710T = VKM B-3429T) and Gimesia panareensis (type strain Enr10T = DSM 100416T = LMG 29082T). STH numbers refer to the Jena Microbial Resource Collection (JMRC).
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | | | - Christian Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany.
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Rivas-Marin E, Wiegand S, Kallscheuer N, Jogler M, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rohde M, Devos DP, Jogler C. Thalassoglobus polymorphus sp. nov., a novel Planctomycete isolated close to a public beach of Mallorca Island. Antonie Van Leeuwenhoek 2020; 113:1915-1926. [PMID: 32583191 PMCID: PMC7716918 DOI: 10.1007/s10482-020-01437-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Access to axenic cultures is crucial to extend the knowledge of the biology, lifestyle or metabolic capabilities of bacteria from different phyla. The phylum Planctomycetes is an excellent example since its members display an unusual cell biology and complex lifestyles. As a contribution to the current collection of axenic planctomycete cultures, here we describe strain Mal48T isolated from phytoplankton material sampled at the coast of S'Arenal close to Palma de Mallorca (Spain). The isolated strain shows optimal growth at pH 7.0-7.5 and 30 °C and exhibits typical features of Planctomycetes. Cells of the strain are spherical to pear-shaped, divide by polar budding with daughter cells showing the same shape as the mother cell, tend to aggregate, display a stalk and produce matrix or fimbriae. Strain Mal48T showed 95.8% 16S rRNA gene sequence similarity with the recently described Thalassoglobus neptunius KOR42T. The genome sequence of the novel isolate has a size of 6,357,355 bp with a G+C content of 50.3%. A total of 4874 protein-coding genes, 41 tRNA genes and 2 copies of the 16S rRNA gene are encoded in the genome. Based on phylogenetic, morphological and physiological analyses, we conclude that strain Mal48T (= DSM 100737T = LMG 29019T) should be classified as the type strain of a new species in the genus Thalassoglobus, for which the name Thalassoglobus polymorphus sp. nov. is proposed.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
17
|
Kallscheuer N, Jogler M, Wiegand S, Peeters SH, Heuer A, Boedeker C, Jetten MSM, Rohde M, Jogler C. Rubinisphaera italica sp. nov. isolated from a hydrothermal area in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie Van Leeuwenhoek 2020; 113:1727-1736. [PMID: 31773447 PMCID: PMC7717053 DOI: 10.1007/s10482-019-01329-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023]
Abstract
Planctomycetes is a fascinating phylum of mostly aquatic bacteria, not only due to the environmental importance in global carbon and nitrogen cycles, but also because of a unique cell biology. Their lifestyle and metabolic capabilities are not well explored, which motivated us to study the role of Planctomycetes in biofilms on marine biotic surfaces. Here, we describe the novel strain Pan54T which was isolated from algae in a hydrothermal area close to the volcanic island Panarea in the Tyrrhenian Sea, north of Sicily in Italy. The strain grew best at pH 9.0 and 26 °C and showed typical characteristics of planctomycetal bacteria, e.g. division by polar budding, formation of aggregates and presence of stalks and crateriform structures. Phylogenetically, the strain belongs to the genus Rubinisphaera. Our analysis suggests that Pan54T represents a novel species of this genus, for which we propose the name Rubinisphaera italica sp. nov. We suggest Pan54T (= DSM 29369 = LMG 29789) as the type strain of the novel species.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Rivas-Marin E, Wiegand S, Kallscheuer N, Jogler M, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rohde M, Devos DP, Jogler C. Maioricimonas rarisocia gen. nov., sp. nov., a novel planctomycete isolated from marine sediments close to Mallorca Island. Antonie Van Leeuwenhoek 2020; 113:1901-1913. [PMID: 32583192 PMCID: PMC7716917 DOI: 10.1007/s10482-020-01436-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes are ubiquitous bacteria with environmental and biotechnological relevance. Axenic cultures of planctomycetal strains are the basis to analyse their unusual biology and largely uncharacterised metabolism in more detail. Here, we describe strain Mal4T isolated from marine sediments close to Palma de Mallorca, Spain. Strain Mal4T displays common planctomycetal features, such as division by polar budding and the presence of fimbriae and crateriform structures on the cell surface. Cell growth was observed at ranges of 10-39 °C (optimum at 31 °C) and pH 6.5-9.0 (optimum at 7.5). The novel strain shows as pear-shaped cells of 2.0 ± 0.2 × 1.4 ± 0.1 µm and is one of the rare examples of orange colony-forming Planctomycetes. Its genome has a size of 7.7 Mb with a G+C content of 63.4%. Phylogenetically, we conclude that strain Mal4T (= DSM 100296T = LMG 29133T) is the type strain representing the type species of a novel genus, for which we propose the name Maioricimonas rarisocia gen. nov., sp. nov.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
19
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
20
|
Structure of Bacterial Communities in Phosphorus-Enriched Rhizosphere Soils. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although phytoremediation is the main method for P-removal and maintaining ecosystem balance in geological phosphorus-enriched soils (PES), little is known about the structure and function of microbial communities in PES. Interactions between plants and soil microorganisms mainly occur in the rhizosphere. The aim of this work was to investigate the composition and diversity of bacterial communities found in rhizosphere soils associated with the following three dominant plant species: Erianthus rufipilus, Coriaria nepalensis, and Pinus yunnanensis. In addition, we compared these rhizosphere bacterial communities with those derived from bulk soils and grassland plots in PES from the Dianchi Lake basin of southwestern China. The Illumina MiSeq platform for high-throughput sequencing of 16S rRNA was used for the taxonomy and the analysis of soil bacterial communities. The results showed higher bacterial diversity and nutrient content in rhizosphere soils as compared with bulk soils. Rhizosphere bacteria were predominantly comprised of Proteobacteria (24.43%) and Acidobacteria (21.09%), followed by Verrucomicrobia (19.48%) and Planctomycetes (9.20%). A comparison of rhizosphere soils of the selected plant species in our study and the grassland plots showed that Acidobacteria were the most abundant in the rhizosphere soil of E. rufipilus; Bradyrhizobiaceae and Rhizobiaceae in the order Rhizobiales from C. nepalensis were found to have the greatest abundance; and Verrucomicrobia and Planctomycetes were in higher abundance in P. yunnanensis rhizosphere soils and in grassland plots. A redundancy analysis revealed that bacterial abundance and diversity were mainly influenced by soil water content, soil organic matter, and total nitrogen.
Collapse
|
21
|
Kohn T, Rast P, Kallscheuer N, Wiegand S, Boedeker C, Jetten MSM, Jeske O, Vollmers J, Kaster AK, Rohde M, Jogler M, Jogler C. The Microbiome of Posidonia oceanica Seagrass Leaves Can Be Dominated by Planctomycetes. Front Microbiol 2020; 11:1458. [PMID: 32754127 PMCID: PMC7366357 DOI: 10.3389/fmicb.2020.01458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Seagrass meadows are ubiquitous, fragile and endangered marine habitats, which serve as fish breeding grounds, stabilize ocean floor substrates, retain nutrients and serve as important carbon sinks, counteracting climate change. In the Mediterranean Sea, seagrass meadows are mostly formed by the slow-growing endemic plant Posidonia oceanica (Neptune grass), which is endangered by global warming and recreational motorboating. Despite its importance, surprisingly little is known about the leaf surface microbiome of P. oceanica. Using amplicon sequencing, we here show that species belonging to the phylum Planctomycetes can dominate the biofilms of young and aged P. oceanica leaves. Application of selective cultivation techniques allowed for the isolation of two novel planctomycetal strains belonging to two yet uncharacterized genera.
Collapse
Affiliation(s)
- Timo Kohn
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Patrick Rast
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | | | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christian Boedeker
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Mike S. M. Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Olga Jeske
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
22
|
Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area. Antonie van Leeuwenhoek 2020; 113:1927-1937. [PMID: 32583190 PMCID: PMC7717036 DOI: 10.1007/s10482-020-01439-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Pan44T, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T (DSM 29405T = LMG 29788T) as the type strain.
Collapse
|
23
|
Kallscheuer N, Jeske O, Sandargo B, Boedeker C, Wiegand S, Bartling P, Jogler M, Rohde M, Petersen J, Medema MH, Surup F, Jogler C. The planctomycete Stieleria maiorica Mal15 T employs stieleriacines to alter the species composition in marine biofilms. Commun Biol 2020; 3:303. [PMID: 32533057 PMCID: PMC7293339 DOI: 10.1038/s42003-020-0993-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial strains of the phylum Planctomycetes occur ubiquitously, but are often found on surfaces of aquatic phototrophs, e.g. alga. Despite slower growth, planctomycetes are not outcompeted by faster-growing bacteria in biofilms on such surfaces; however, strategies allowing them to compensate for slower growth have not yet been investigated. Here, we identified stieleriacines, a class of N-acylated tyrosines produced by the novel planctomycete Stieleria maiorica Mal15T, and analysed their effects on growth of the producing strain and bacterial species likely co-occurring with strain Mal15T. Stieleriacines reduced the lag phase of Mal15T and either stimulated or inhibited biofilm formation of two bacterial competitors, indicating that Mal15T employs stieleriacines to specifically alter microbial biofilm composition. The genetic organisation of the putative stieleriacine biosynthetic cluster in strain Mal15T points towards a functional link of stieleriacine biosynthesis to exopolysaccharide-associated protein sorting and biofilm formation.
Collapse
Affiliation(s)
| | - Olga Jeske
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.,Leibniz Institute DSMZ, Braunschweig, Germany
| | - Birthe Sandargo
- Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Centre for Infection Research (DZIF), Braunschweig, Germany
| | | | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Frank Surup
- Helmholtz Centre for Infection Research, Braunschweig, Germany. .,German Centre for Infection Research (DZIF), Braunschweig, Germany.
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands. .,Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
24
|
Vitorino I, Albuquerque L, Wiegand S, Kallscheuer N, da Costa MS, Lobo-da-Cunha A, Jogler C, Lage OM. Alienimonas chondri sp. nov., a novel planctomycete isolated from the biofilm of the red alga Chondrus crispus. Syst Appl Microbiol 2020; 43:126083. [PMID: 32360272 DOI: 10.1016/j.syapm.2020.126083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
Abstract
The phylum Planctomycetes comprises bacteria with peculiar and very unique characteristics among prokaryotes. In marine environments, macroalgae biofilms are well known for harboring planctomycetal diversity. Here, we describe a novel isolate obtained from the biofilm of the red alga Chondrus crispus collected at a rocky beach in Porto, Portugal. The novel strain LzC2T is motile, rosette-forming with spherical- to ovoid-shaped cells. LzC2T forms magenta- to pinkish-colored colonies in M13 and M14 media. Transmission and scanning electron microscopy observations showed a division by polar and lateral budding. Mother cells are connected to the daughter cells by a tubular neck-like structure. The strain requires salt for growth. Vitamins are not required for growth. Optimal growth occurs from 15 to 30°C and within a pH range from 5.5 to 10.0. Major fatty acids are anteiso-C15:0 (54.2%) and iso-C15:0 (19.5%). Phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid represent the main lipids and menaquinone 6 (MK-6) is the only quinone present. 16S rRNA gene-based phylogenetic analysis supports the affiliation to the phylum Planctomycetes and family Planctomycetaceae, with Alienimonas as the closest relative. Strain LzC2T shares 97% 16S rRNA gene sequence similarity with Alienimonas californiensis. LzC2T has a genome size of 5.3 Mb and a G+C content of 68.3%. Genotypic and phenotypic comparison with the closest relatives strongly suggest that LzC2T (=CECT 30038T=LMG XXXT) is a new species of the genus Alienimonas, for which we propose the name Alienimonas chondri sp. nov., represented by LzC2T as type strain. 16S rRNA gene accession number: GenBank=MN757873.1. Genome accession number: GenBank=WTPX00000000.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/no., 4169-007 Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Luciana Albuquerque
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Milton S da Costa
- Departamento de Ciências da Vida, Apartado 3046, Universidade de Coimbra, 3001-401 Coimbra, Portugal
| | - Alexandre Lobo-da-Cunha
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Christian Jogler
- Institute of Microbiology, Department of Microbial Interactions, Friedrich-Schiller University Jena, Philosophenweg 12, Jena, Germany
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/no., 4169-007 Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
25
|
Description of the novel planctomycetal genus Bremerella, containing Bremerella volcania sp. nov., isolated from an active volcanic site, and reclassification of Blastopirellula cremea as Bremerella cremea comb. nov. Antonie van Leeuwenhoek 2020; 113:1823-1837. [DOI: 10.1007/s10482-019-01378-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
|
26
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Rast P, Boedeker C, Rohde M, Jogler C. Three marine strains constitute the novel genus and species Crateriforma conspicua in the phylum Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1797-1809. [PMID: 31894495 DOI: 10.1007/s10482-019-01375-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Planctomycetes is a ubiquitous phylum of mostly aquatic bacteria that have a complex lifestyle and an unusual cell biology. Here, we describe three strains of the same novel genus and species isolated from three different environments; from a red biofilm at a hydrothermal vent in the Mediterranean Sea, from sediment in a salt-water fish tank, and from the surface of algae at the coast of the Balearic island Mallorca. The three strains Mal65T (DSM 100706T = LMG 29792T, Pan14r (DSM 29351 = LMG 29012), and V7 (DSM 29812 = CECT 9853 = VKM B-3427) show typical characteristics of the Planctomycetaceae family, such as cell division by budding, crateriform structures and growth in aggregates or rosettes. The strains are mesophilic, neutrophilic to alkaliphilic as well as chemoheterotrophic and exhibit doubling times between 12 and 35 h. Based on our phylogenetic analysis, the three strains represent a single novel species of a new genus, for which we propose the name Crateriforma conspicua gen. nov. sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.,Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands. .,Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
27
|
Three novel Rubripirellula species isolated from plastic particles submerged in the Baltic Sea and the estuary of the river Warnow in northern Germany. Antonie van Leeuwenhoek 2019; 113:1767-1778. [DOI: 10.1007/s10482-019-01368-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
|
28
|
Rhodopirellula heiligendammensis sp. nov., Rhodopirellula pilleata sp. nov., and Rhodopirellula solitaria sp. nov. isolated from natural or artificial marine surfaces in Northern Germany and California, USA, and emended description of the genus Rhodopirellula. Antonie van Leeuwenhoek 2019; 113:1737-1750. [DOI: 10.1007/s10482-019-01366-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
29
|
Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller RW, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster AK, Øvreås L, Rohde M, Galperin MY, Jogler C. Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat Microbiol 2019; 5:126-140. [PMID: 31740763 DOI: 10.1038/s41564-019-0588-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as well as budding, we identified previously unknown modes of bacterial cell division. Alongside unobserved aspects of cell signalling and small-molecule production, our findings demonstrate that exploration beyond the well-established model organisms has the potential to increase our knowledge of bacterial diversity. We illustrate how 'microbial dark matter' can be accessed by cultivation techniques, expanding the organismic background for small-molecule research and drug-target detection.
Collapse
Affiliation(s)
| | | | | | | | - John Vollmers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Timo Kohn
- Radboud University, Nijmegen, The Netherlands
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Sonja Oberbeckmann
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | - Matthias Labrenz
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | | | | | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | | | | | | | | | - Christian Jogler
- Radboud University, Nijmegen, The Netherlands. .,Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
30
|
Dedysh SN, Henke P, Ivanova AA, Kulichevskaya IS, Philippov DA, Meier‐Kolthoff JP, Göker M, Huang S, Overmann J. 100‐year‐old enigma solved: identification, genomic characterization and biogeography of the yet uncultured
Planctomyces bekefii. Environ Microbiol 2019; 22:198-211. [DOI: 10.1111/1462-2920.14838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Svetlana N. Dedysh
- Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Petra Henke
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Anastasia A. Ivanova
- Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Irina S. Kulichevskaya
- Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Dmitriy A. Philippov
- Papanin Institute for Biology of Inland WatersRussian Academy of Sciences Borok 152742 Russia
| | - Jan P. Meier‐Kolthoff
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Markus Göker
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Sixing Huang
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
- Braunschweig University of Technology Braunschweig Germany
| |
Collapse
|
31
|
Kohn T, Wiegand S, Boedeker C, Rast P, Heuer A, Jetten MSM, Schüler M, Becker S, Rohde C, Müller RW, Brümmer F, Rohde M, Engelhardt H, Jogler M, Jogler C. Planctopirus ephydatiae, a novel Planctomycete isolated from a freshwater sponge. Syst Appl Microbiol 2019; 43:126022. [PMID: 31785948 DOI: 10.1016/j.syapm.2019.126022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/28/2023]
Abstract
The microbiome of freshwater sponges is rarely studied, and not a single novel bacterial species has been isolated and subsequently characterized from a freshwater sponge to date. A previous study showed that 14.4% of the microbiome from Ephydatia fluviatilis belong to the phylum Planctomycetes. Therefore, we sampled an Ephydatia sponge from a freshwater lake and employed enrichment techniques targeting bacteria from the phylum Planctomycetes. The obtained strain spb1T was subject to genomic and phenomic characterization and found to represent a novel planctomycetal species proposed as Planctopirus ephydatiae sp. nov. (DSM 106606 = CECT 9866). In the process of differentiating spb1T from its next relative Planctopirus limnophila DSM 3776T, we identified and characterized the first phage - Planctopirus phage vB_PlimS_J1 - infecting planctomycetes that was only mentioned anecdotally before. Interestingly, classical chemotaxonomic methods would have failed to distinguish Planctopirus ephydatiae strain spb1T from Planctopirus limnophila DSM 3776T. Our findings demonstrate and underpin the need for whole genome-based taxonomy to detect and differentiate planctomycetal species.
Collapse
Affiliation(s)
- T Kohn
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - S Wiegand
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - C Boedeker
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - P Rast
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - A Heuer
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - M S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - M Schüler
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - S Becker
- University of Veterinary Medicine Hannover, Germany
| | - C Rohde
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - R-W Müller
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - F Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - M Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), Braunschweig, Germany
| | - H Engelhardt
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - M Jogler
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - C Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands; Department of Microbial Interactions, Friedrich Schiller Universität Jena, Germany.
| |
Collapse
|
32
|
Chen Z, Chang Z, Zhang L, Jiang Y, Ge H, Song X, Chen S, Zhao F, Li J. Effects of water recirculation rate on the microbial community and water quality in relation to the growth and survival of white shrimp (Litopenaeus vannamei). BMC Microbiol 2019; 19:192. [PMID: 31426738 PMCID: PMC6701121 DOI: 10.1186/s12866-019-1564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/04/2019] [Indexed: 11/10/2022] Open
Abstract
Background Microbial community and its management are crucial to the stabilization of culture environment for recirculating aquaculture system (RAS). Although several studies have been carried out for the microbial community of RAS, few studies were on the RAS for shrimp. Water recirculation ratio is an important factor for the microbial community and the management of RAS. Therefore, low (LC), medium (MC) and high (HC) recirculation ratio systems were set to explore the microbial community constitution of RAS for Litopenaeus vannamei and study the effect of water recirculation rate on it. Results The bacterial community of bioreactor was mainly dominated by Proteobacteria (41.6–70.7%), followed with Planctomycetes (12.5–31.0%), Bacteroidetes (10.5–26.0%), Actinobacteria (1.1–4.8%) and Verrucomicrobia (1.4–6.8%) phylum. The most dominant family of bioreactor was Rhodobacteraceae or Planctomycetaceae. The bacterial community of culture water was simpler than bioreactor and dominated by Proteobacteria (61.8–96.4%). The dominant bacterial groups of bioreactor and culture water are also different among the three water recirculation rates, and the proportions of dominant groups showed a trend with the variety of water recirculation rate. Water quality indexes including ammonia and nitrite decreased with the increasing of water recirculation rate. According to the growth performance of L. vannamei, shrimp had better performance of growth rate and final weight in MC and HC, however, shrimp had higher survival and yield in LC. Shrimp survival and yield had an inverse correlation with water recirculation rate. Conclusions The results demonstrate the microbial community of RAS for shrimp, highlight the importance of further studies on the function of bacterial taxa, and promote the understanding of the effects of water recirculation rate on the microbiota. The findings suggest that water recirculation rate has important impacts on the microbial community, water quality and shrimp growth. Increasing the water recirculation rate could improve the water quality and promote the growth of shrimp. However, the survival rate and yield of L. vannamei are higher under low water recirculation rate. Recirculation rate is an effective method to manage RAS, and its impact on RAS needs further study, especially in the application of low level of water recirculation.
Collapse
Affiliation(s)
- Zhao Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.,Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhiqiang Chang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Long Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Yuli Jiang
- Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hongxing Ge
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Xiefa Song
- Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Shibo Chen
- Qingdao Excellent Ocean Group Co., Ltd, Qingdao, 266400, People's Republic of China
| | - Fazhen Zhao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Jian Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
33
|
Kovaleva OL, Elcheninov AG, Toshchakov SV, Novikov AA, Bonch-Osmolovskaya EA, Kublanov IV. Tautonia sociabilis gen. nov., sp. nov., a novel thermotolerant planctomycete, isolated from a 4000 m deep subterranean habitat. Int J Syst Evol Microbiol 2019; 69:2299-2304. [DOI: 10.1099/ijsem.0.003467] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Olga L. Kovaleva
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexander G. Elcheninov
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| | - Stepan V. Toshchakov
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| | - Andrei A. Novikov
- 2Department of Physical Chemistry, Gubkin University, Moscow, Russia
| | | | - Ilya V. Kublanov
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
34
|
Faria M, Bordin N, Kizina J, Harder J, Devos D, Lage OM. Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics 2018; 110:231-238. [PMID: 29074368 DOI: 10.1016/j.ygeno.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/06/2017] [Accepted: 10/21/2017] [Indexed: 01/03/2023]
Abstract
Planctomycetes are bacteria with complex molecular and cellular biology. They have large genomes, some over 7Mb, and complex life cycles that include motile cells and sessile cells. Some live on the complex biofilm of macroalgae. Factors governing their life in this environment were investigated at the genomic level. We analyzed the genomes of three planctomycetes isolated from algal surfaces. The genomes were 6.6Mbp to 8.1Mbp large. Genes for outer-membrane proteins, peptidoglycan and lipopolysaccharide biosynthesis were present. Rubripirellula obstinata LF1T, Roseimaritima ulvae UC8T and Mariniblastus fucicola FC18T shared with Rhodopirellula baltica and R. rubra SWK7 unique proteins related to metal binding systems, phosphate metabolism, chemotaxis, and stress response. These functions may contribute to their ecological success in such a complex environment. Exceptionally huge proteins (6000 to 10,000 amino-acids) with extracellular, periplasmic or membrane-associated locations were found which may be involved in biofilm formation or cell adhesion.
Collapse
Affiliation(s)
- Mafalda Faria
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nicola Bordin
- Centro Andaluz de Biología del Desarollo, CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Jana Kizina
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Jens Harder
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Damien Devos
- Centro Andaluz de Biología del Desarollo, CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Olga M Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
35
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Genome Analysis of Fimbriiglobus ruber SP5 T, a Planctomycete with Confirmed Chitinolytic Capability. Appl Environ Microbiol 2018; 84:AEM.02645-17. [PMID: 29374042 DOI: 10.1128/aem.02645-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/21/2018] [Indexed: 11/20/2022] Open
Abstract
Members of the bacterial order Planctomycetales have often been observed in associations with Crustacea. The ability to degrade chitin, however, has never been reported for any of the cultured planctomycetes although utilization of N-acetylglucosamine (GlcNAc) as a sole carbon and nitrogen source is well recognized for these bacteria. Here, we demonstrate the chitinolytic capability of a member of the family Gemmataceae, Fimbriiglobus ruber SP5T, which was isolated from a peat bog. As revealed by metatranscriptomic analysis of chitin-amended peat, the pool of 16S rRNA reads from F. ruber increased in response to chitin availability. Strain SP5T displayed only weak growth on amorphous chitin as a sole source of carbon but grew well with chitin as a source of nitrogen. The genome of F. ruber SP5T is 12.364 Mb in size and is the largest among all currently determined planctomycete genomes. It encodes several enzymes putatively involved in chitin degradation, including two chitinases affiliated with the glycoside hydrolase (GH) family GH18, GH20 family β-N-acetylglucosaminidase, and the complete set of enzymes required for utilization of GlcNAc. The gene encoding one of the predicted chitinases was expressed in Escherichia coli, and the endochitinase activity of the recombinant enzyme was confirmed. The genome also contains genes required for the assembly of type IV pili, which may be used to adhere to chitin and possibly other biopolymers. The ability to use chitin as a source of nitrogen is of special importance for planctomycetes that inhabit N-depleted ombrotrophic wetlands.IMPORTANCE Planctomycetes represent an important part of the microbial community in Sphagnum-dominated peatlands, but their potential functions in these ecosystems remain poorly understood. This study reports the presence of chitinolytic potential in one of the recently described peat-inhabiting members of the family Gemmataceae, Fimbriiglobus ruber SP5T This planctomycete uses chitin, a major constituent of fungal cell walls and exoskeletons of peat-inhabiting arthropods, as a source of nitrogen in N-depleted ombrotrophic Sphagnum-dominated peatlands. This study reports the chitin-degrading capability of representatives of the order Planctomycetales.
Collapse
|
37
|
Rivas-Marín E, Devos DP. The Paradigms They Are a-Changin': past, present and future of PVC bacteria research. Antonie van Leeuwenhoek 2017; 111:785-799. [PMID: 29058138 PMCID: PMC5945725 DOI: 10.1007/s10482-017-0962-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
Abstract
These are exciting times for PVC researchers! The PVC superphylum is composed of the bacterial phyla Planctomycetes, Verrucomicrobia, Chlamydiae (those three founders giving it its name), Lentisphaerae and Kirimatiellaeota as well as some uncultured candidate phyla, such as the Candidatus Omnitrophica (previously known as OP3). Despite early debates, most of the disagreements that surround this group of bacteria have been recently resolved. In this article, we review the history of the study of PVC bacteria, with a particular focus on the misinterpretations that emerged early in the field and their resolution. We begin with a historical perspective that describes the relevant facts of PVC research from the early times when they were not yet termed PVC. Those were controversial times and we refer to them as the “discovery age” of the field. We continue by describing new discoveries due to novel techniques and data that combined with the reinterpretations of old ones have contributed to solve most of the discordances and we refer to these times as the “illumination age” of PVC research. We follow by arguing that we are just entering the “golden age” of PVC research and that the future of this growing community is looking bright. We finish by suggesting a few of the directions that PVC researches might take in the future.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain.
| |
Collapse
|
38
|
Vollmers J, Frentrup M, Rast P, Jogler C, Kaster AK. Untangling Genomes of Novel Planctomycetal and Verrucomicrobial Species from Monterey Bay Kelp Forest Metagenomes by Refined Binning. Front Microbiol 2017; 8:472. [PMID: 28424662 PMCID: PMC5372823 DOI: 10.3389/fmicb.2017.00472] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
The kelp forest of the Pacific temperate rocky marine coastline of Monterey Bay in California is a dominant habitat for large brown macro-algae in the order of Laminariales. It is probably one of the most species-rich, structurally complex and productive ecosystems in temperate waters and well-studied in terms of trophic ecology. However, still little is known about the microorganisms thriving in this habitat. A growing body of evidence suggests that bacteria associated with macro-algae represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological purposes. Those microorganisms are most likely attracted by algae through secretion of specific carbohydrates and proteins that trigger them to attach to the algal surface and to form biofilms. The algae might then employ those bacteria as biofouling control, using their antimicrobial secondary metabolites to defeat other bacteria or eukaryotes. We here analyzed biofilm samples from the brown macro-algae Macrocystis pyrifera sampled in November 2014 in the kelp forest of Monterey Bay by a metagenomic shotgun and amplicon sequencing approach, focusing on Planctomycetes and Verrucomicrobia from the PVC superphylum. Although not very abundant, we were able to find novel Planctomycetal and Verrucomicrobial species by an innovative binning approach. All identified species harbor secondary metabolite related gene clusters, contributing to our hypothesis that through inter-species interaction, microorganisms might have a substantial effect on kelp forest wellbeing and/or disease-development.
Collapse
Affiliation(s)
- John Vollmers
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Martinique Frentrup
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Patrick Rast
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Christian Jogler
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany.,Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegen, Netherlands
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
39
|
Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative Genomics of Four Isosphaeraceae Planctomycetes: A Common Pool of Plasmids and Glycoside Hydrolase Genes Shared by Paludisphaera borealis PX4 T, Isosphaera pallida IS1B T, Singulisphaera acidiphila DSM 18658 T, and Strain SH-PL62. Front Microbiol 2017; 8:412. [PMID: 28360896 PMCID: PMC5352709 DOI: 10.3389/fmicb.2017.00412] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
The family Isosphaeraceae accommodates stalk-free planctomycetes with spherical cells, which can be assembled in short chains, long filaments, or aggregates. These bacteria inhabit a wide variety of terrestrial environments, among those the recently described Paludisphaera borealis PX4T that was isolated from acidic boreal wetlands. Here, we analyzed its finished genome in comparison to those of three other members of the Isosphaeraceae: Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and the uncharacterized planctomycete strain SH-PL62. The complete genome of P. borealis PX4T consists of a 7.5 Mb chromosome and two plasmids, 112 and 43 kb in size. Annotation of the genome sequence revealed 5802 potential protein-coding genes of which 2775 could be functionally assigned. The genes encoding metabolic pathways common for chemo-organotrophic bacteria, such as glycolysis, citrate cycle, pentose-phosphate pathway, and oxidative phosphorylation were identified. Several genes involved in the synthesis of peptidoglycan as well as N-methylated ornithine lipids were present in the genome of P. borealis PX4T. A total of 26 giant genes with a size >5 kb were detected. The genome encodes a wide repertoire of carbohydrate-active enzymes (CAZymes) including 44 glycoside hydrolases (GH) and 83 glycosyltransferases (GT) affiliated with 21 and 13 CAZy families, respectively. The most-represented families are GH5, GH13, GH57, GT2, GT4, and GT83. The experimentally determined carbohydrate utilization pattern agrees well with the genome-predicted capabilities. The CAZyme repertoire in P. borealis PX4T is highly similar to that in the uncharacterized planctomycete SH-PL62 and S. acidiphila DSM 18658T, but different to that in the thermophile I. pallida IS1BT. The latter strain has a strongly reduced CAZyme content. In P. borealis PX4T, many of its CAZyme genes are organized in clusters. Contrary to most other members of the order Planctomycetales, all four analyzed Isosphaeraceae planctomycetes have plasmids in numbers varying from one to four. The plasmids from P. borealis PX4T display synteny to plasmids from other family members, providing evidence for their common evolutionary origin.
Collapse
Affiliation(s)
- Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| | - Daniil G. Naumoff
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| | - Kirill K. Miroshnikov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| | - Werner Liesack
- Max-Planck-Institute for Terrestrial Microbiology,Marburg, Germany
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| |
Collapse
|