1
|
Chimeric inheritance and crown-group acquisitions of carbon fixation genes within Chlorobiales: Origins of autotrophy in Chlorobiales and implication for geological biomarkers. PLoS One 2022; 17:e0275539. [PMID: 36227849 PMCID: PMC9560492 DOI: 10.1371/journal.pone.0275539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
The geological record of microbial metabolisms and ecologies primarily consists of stable isotope fractionations and the diagenetic products of biogenic lipids. Carotenoid lipid biomarkers are particularly useful proxies for reconstructing this record, providing information on microbial phototroph primary productivity, redox couples, and oxygenation. The biomarkers okenane, chlorobactane, and isorenieratene are generally considered to be evidence of anoxygenic phototrophs, and provide a record that extends to 1.64 Ga. The utility of the carotenoid biomarker record may be enhanced by examining the carbon isotopic ratios in these products, which are diagnostic for specific pathways of biological carbon fixation found today within different microbial groups. However, this joint inference assumes that microbes have conserved these pathways across the duration of the preserved biomarker record. Testing this hypothesis, we performed phylogenetic analyses of the enzymes constituting the reductive tricarboxylic acid (rTCA) cycle in Chlorobiales, the group of anoxygenic phototrophic bacteria usually implicated in the deposition of chlorobactane and isorenieretane. We find phylogenetically incongruent patterns of inheritance across all enzymes, indicative of horizontal gene transfers to both stem and crown Chlorobiales from multiple potential donor lineages. This indicates that a complete rTCA cycle was independently acquired at least twice within Chlorobiales and was not present in the last common ancestor. When combined with recent molecular clock analyses, these results predict that the Mesoproterzoic lipid biomarker record diagnostic for Chlorobiales should not preserve isotopic fractionations indicative of a full rTCA cycle. Furthermore, we conclude that coupling isotopic and biomarker records is insufficient for reliably reconstructing microbial paleoecologies in the absence of a complementary and consistent phylogenomic narrative.
Collapse
|
2
|
Han Y, Wang Q, Li Q, Hu C. Active metabolism and biomass dynamics of biocrusts are shaped by variation in their successional state and seasonal energy sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154756. [PMID: 35339556 DOI: 10.1016/j.scitotenv.2022.154756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Seasonal growth and changes in biomass within communities are the core of ecosystem dynamics. Biocrusts play a prominent role as pioneers in dryland soils. However, the seasonal dynamics of biocrusts remain poorly resolved. In this study, we collected biocrusts across a successional gradient (cyanobacteria, cyanolichen, chlorolichen, and moss-dominated) from southeastern Tengger Desert (China) during the summer and autumn seasons, and explored seasonal changes in metabolism and biomass using multi-omics approaches. We found that Cyanobacteria and Ascomycota were the dominant active taxa and both exhibited higher abundances in autumn. We also found that the dominant primary producers in biocrusts strongly affected community-wide characteristics of metabolism. Along with seasonal differences in light energy utilization, utilization of inorganic energy sources exhibited higher expression in the summer while for organic sources, in the autumn. We found that overall metabolism was significantly regulated by the ratio of intracellular to extracellular polymer degradation, and affected by NO3-, PO43- and EC (in the summer)/NO2- (in the autumn). In summary, biocrust growth varied with seasonal variation in light energy utilization and complementary chemical energy sources, with the most suitable season varying with biocrust successional type.
Collapse
Affiliation(s)
- Yingchun Han
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Kminek G, Benardini JN, Brenker FE, Brooks T, Burton AS, Dhaniyala S, Dworkin JP, Fortman JL, Glamoclija M, Grady MM, Graham HV, Haruyama J, Kieft TL, Koopmans M, McCubbin FM, Meyer MA, Mustin C, Onstott TC, Pearce N, Pratt LM, Sephton MA, Siljeström S, Sugahara H, Suzuki S, Suzuki Y, van Zuilen M, Viso M. COSPAR Sample Safety Assessment Framework (SSAF). ASTROBIOLOGY 2022; 22:S186-S216. [PMID: 35653292 DOI: 10.1089/ast.2022.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
Collapse
Affiliation(s)
- Gerhard Kminek
- European Space Agency, Mars Exploration Group, Noordwijk, The Netherlands
| | - James N Benardini
- NASA Headquarters, Office of Planetary Protection, Washington, DC, USA
| | - Frank E Brenker
- Goethe University, Department of Geoscience, Frankfurt, Germany
| | - Timothy Brooks
- UK Health Security Agency, Rare & Imported Pathogens Laboratory, Salisbury, UK
| | - Aaron S Burton
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Suresh Dhaniyala
- Clarkson University, Department of Mechanical and Aeronautical Engineering, Potsdam, New York, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Jeffrey L Fortman
- Security Programs, Engineering Biology Research Consortium, Emeryville, USA
| | - Mihaela Glamoclija
- Rutgers University, Department of Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Monica M Grady
- The Open University, Faculty of Science, Technology, Engineering & Mathematics, Milton Keynes, UK
| | - Heather V Graham
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, Maryland, USA
| | - Junichi Haruyama
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Thomas L Kieft
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, USA
| | - Marion Koopmans
- Erasmus University Medical Centre, Department of Viroscience, Rotterdam, The Netherlands
| | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Meyer
- NASA Headquarters, Planetary Science Division, Washington, DC, USA
| | | | - Tullis C Onstott
- Princeton University, Department of Geosciences, Princeton, New Jersey, USA
| | - Neil Pearce
- London School of Hygiene & Tropical Medicine, Department of Medical Statistics, London, UK
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Emeritus, Bloomington, Indiana, USA
| | - Mark A Sephton
- Imperial College London, Department of Earth Science & Engineering, London, UK
| | - Sandra Siljeström
- RISE, Research Institutes of Sweden, Department of Methodology, Textiles and Medical Technology, Stockholm, Sweden
| | - Haruna Sugahara
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Shino Suzuki
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Yohey Suzuki
- University of Tokyo, Graduate School of Science, Tokyo, Japan
| | - Mark van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- European Institute for Marine Studies (IUEM), CNRS-UMR6538 Laboratoire Geo-Ocean, Plouzané, France
| | | |
Collapse
|
4
|
Mueller RC, Peach JT, Skorupa DJ, Copié V, Bothner B, Peyton BM. An emerging view of the diversity, ecology and function of Archaea in alkaline hydrothermal environments. FEMS Microbiol Ecol 2021; 97:6021323. [PMID: 33501490 DOI: 10.1093/femsec/fiaa246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
The described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems. In this review, we examine what is currently known about the archaea found in thermoalkaline environments, focusing on the detection of novel lineages and knowledge of the ecology, metabolic pathways and functions of these populations and communities. We also discuss the potential of emerging multi-omics approaches, including proteomics and metabolomics, to enhance our understanding of archaea within extreme thermoalkaline systems.
Collapse
Affiliation(s)
- Rebecca C Mueller
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA
| | - Dana J Skorupa
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Valerie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| |
Collapse
|
5
|
Tong H, Zheng C, Li B, Swanner ED, Liu C, Chen M, Xia Y, Liu Y, Ning Z, Li F, Feng X. Microaerophilic Oxidation of Fe(II) Coupled with Simultaneous Carbon Fixation and As(III) Oxidation and Sequestration in Karstic Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3634-3644. [PMID: 33411520 DOI: 10.1021/acs.est.0c05791] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microaerophilic Fe(II)-oxidizing bacteria are often chemolithoautotrophs, and the Fe(III) (oxyhydr)oxides they form could immobilize arsenic (As). If such microbes are active in karstic paddy soils, their activity would help increase soil organic carbon and mitigate As contamination. We therefore used gel-stabilized gradient systems to cultivate microaerophilic Fe(II)-oxidizing bacteria from karstic paddy soil to investigate their capacity for Fe(II) oxidation, carbon fixation, and As sequestration. Stable isotope probing demonstrated the assimilation of inorganic carbon at a maximum rate of 8.02 mmol C m-2 d-1. Sequencing revealed that Bradyrhizobium, Cupriavidus, Hyphomicrobium, Kaistobacter, Mesorhizobium, Rhizobium, unclassified Phycisphaerales, and unclassified Opitutaceas were fixing carbon. Fe(II) oxidation produced Fe(III) (oxyhydr)oxides, which can absorb and/or coprecipitate As. Adding As(III) decreased the diversity of functional bacteria involved in carbon fixation, the relative abundance of predicted carbon fixation genes, and the amount of carbon fixed. Although the rate of Fe(II) oxidation was also lower in the presence of As(III), over 90% of the As(III) was sequestered after oxidation. The potential for microbially mediated As(III) oxidation was revealed by the presence of arsenite oxidase gene (aioA), denoting the potential of the Fe(II)-oxidizing and autotrophic microbial community to also oxidize As(III). Thisstudy demonstrates that carbon fixation coupled to Fe(II) oxidation can increase the carbon content in soils by microaerophilic Fe(II)-oxidizing bacteria, as well as accelerate As(III) oxidation and sequester it in association with Fe(III) (oxyhydr)oxides.
Collapse
Affiliation(s)
- Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames50011, Iowa, United States
| | - Chunju Zheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames50011, Iowa, United States
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an710061, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an710061, China
| |
Collapse
|
6
|
Hot in Cold: Microbial Life in the Hottest Springs in Permafrost. Microorganisms 2020; 8:microorganisms8091308. [PMID: 32867302 PMCID: PMC7565842 DOI: 10.3390/microorganisms8091308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Chukotka is an arctic region located in the continuous permafrost zone, but thermal springs are abundant there. In this study, for the first time, the microbial communities of the Chukotka hot springs (CHS) biofilms and sediments with temperatures 54–94 °C were investigated and analyzed by NGS sequencing of 16S rRNA gene amplicons. In microbial mats (54–75 °C), phototrophic bacteria of genus Chloroflexus dominated (up to 89% of all prokaryotes), while Aquificae were the most numerous at higher temperatures in Fe-rich sediments and filamentous “streamers” (up to 92%). The electron donors typical for Aquificae, such as H2S and H2, are absent or present only in trace amounts, and the prevalence of Aquificae might be connected with their ability to oxidize the ferrous iron present in CHS sediments. Armatimonadetes, Proteobacteria, Deinococcus-Thermus, Dictyoglomi, and Thermotogae, as well as uncultured bacteria (candidate divisions Oct-Spa1-106, GAL15, and OPB56), were numerous, and Cyanobacteria were present in low numbers. Archaea (less than 8% of the total community of each tested spring) belonged to Bathyarchaeota, Aigarchaeota, and Thaumarchaeota. The geographical location and the predominantly autotrophic microbial community, built on mechanisms other than the sulfur cycle-based ones, make CHS a special and unique terrestrial geothermal ecosystem.
Collapse
|
7
|
Thomas SC, Tamadonfar KO, Seymour CO, Lai D, Dodsworth JA, Murugapiran SK, Eloe-Fadrosh EA, Dijkstra P, Hedlund BP. Position-Specific Metabolic Probing and Metagenomics of Microbial Communities Reveal Conserved Central Carbon Metabolic Network Activities at High Temperatures. Front Microbiol 2019; 10:1427. [PMID: 31333598 PMCID: PMC6624737 DOI: 10.3389/fmicb.2019.01427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/05/2019] [Indexed: 12/02/2022] Open
Abstract
Temperature is a primary driver of microbial community composition and taxonomic diversity; however, it is unclear to what extent temperature affects characteristics of central carbon metabolic pathways (CCMPs) at the community level. In this study, 16S rRNA gene amplicon and metagenome sequencing were combined with 13C-labeled metabolite probing of the CCMPs to assess community carbon metabolism along a temperature gradient (60–95°C) in Great Boiling Spring, NV. 16S rRNA gene amplicon diversity was inversely proportional to temperature, and Archaea were dominant at higher temperatures. KO richness and diversity were also inversely proportional to temperature, yet CCMP genes were similarly represented across the temperature gradient and many individual metagenome-assembled genomes had complete pathways. In contrast, genes encoding cellulosomes and many genes involved in plant matter degradation and photosynthesis were absent at higher temperatures. In situ13C-CO2 production from labeled isotopomer pairs of glucose, pyruvate, and acetate suggested lower relative oxidative pentose phosphate pathway activity and/or fermentation at 60°C, and a stable or decreased maintenance energy demand at higher temperatures. Catabolism of 13C-labeled citrate, succinate, L-alanine, L-serine, and L-cysteine was observed at 85°C, demonstrating broad heterotrophic activity and confirming functioning of the TCA cycle. Together, these results suggest that temperature-driven losses in biodiversity and gene content in geothermal systems may not alter CCMP function or maintenance energy demands at a community level.
Collapse
Affiliation(s)
- Scott C Thomas
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Kevin O Tamadonfar
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | | | - Emiley A Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Joint Genome Institute, Walnut Creek, CA, United States
| | - Paul Dijkstra
- Department of Biological Sciences, Center of Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
8
|
Hunt KA, Jennings RM, Inskeep WP, Carlson RP. Multiscale analysis of autotroph-heterotroph interactions in a high-temperature microbial community. PLoS Comput Biol 2018; 14:e1006431. [PMID: 30260956 PMCID: PMC6177205 DOI: 10.1371/journal.pcbi.1006431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/09/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Interactions among microbial community members can lead to emergent properties, such as enhanced productivity, stability, and robustness. Iron-oxide mats in acidic (pH 2-4), high-temperature (> 65 °C) springs of Yellowstone National Park contain relatively simple microbial communities and are well-characterized geochemically. Consequently, these communities are excellent model systems for studying the metabolic activity of individual populations and key microbial interactions. The primary goals of the current study were to integrate data collected in situ with in silico calculations across process-scales encompassing enzymatic activity, cellular metabolism, community interactions, and ecosystem biogeochemistry, as well as to predict and quantify the functional limits of autotroph-heterotroph interactions. Metagenomic and transcriptomic data were used to reconstruct carbon and energy metabolisms of an important autotroph (Metallosphaera yellowstonensis) and heterotroph (Geoarchaeum sp. OSPB) from the studied Fe(III)-oxide mat communities. Standard and hybrid elementary flux mode and flux balance analyses of metabolic models predicted cellular- and community-level metabolic acclimations to simulated environmental stresses, respectively. In situ geochemical analyses, including oxygen depth-profiles, Fe(III)-oxide deposition rates, stable carbon isotopes and mat biomass concentrations, were combined with cellular models to explore autotroph-heterotroph interactions important to community structure-function. Integration of metabolic modeling with in situ measurements, including the relative population abundance of autotrophs to heterotrophs, demonstrated that Fe(III)-oxide mat communities operate at their maximum total community growth rate (i.e. sum of autotroph and heterotroph growth rates), as opposed to net community growth rate (i.e. total community growth rate subtracting autotroph consumed by heterotroph), as predicted from the maximum power principle. Integration of multiscale data with ecological theory provides a basis for predicting autotroph-heterotroph interactions and community-level cellular organization.
Collapse
Affiliation(s)
- Kristopher A. Hunt
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Ryan M. Jennings
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - William P. Inskeep
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (WPI); (RPC)
| | - Ross P. Carlson
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (WPI); (RPC)
| |
Collapse
|
9
|
Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci Rep 2017; 7:7252. [PMID: 28775334 PMCID: PMC5543129 DOI: 10.1038/s41598-017-07354-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/27/2017] [Indexed: 01/26/2023] Open
Abstract
Recent discoveries have shown that the marker gene for anaerobic methane cycling (mcrA) is more widespread in the Archaea than previously thought. However, it remains unclear whether novel mcrA genes associated with the Bathyarchaeota and Verstraetearchaeota are distributed across diverse environments. We examined two geochemically divergent but putatively methanogenic regions of Yellowstone National Park to investigate whether deeply-rooted archaea possess and express novel mcrA genes in situ. Small-subunit (SSU) rRNA gene analyses indicated that Bathyarchaeota were predominant in seven of ten sediment layers, while the Verstraetearchaeota and Euryarchaeota occurred in lower relative abundance. Targeted amplification of novel mcrA genes suggested that diverse taxa contribute to alkane cycling in geothermal environments. Two deeply-branching mcrA clades related to Bathyarchaeota were identified, while highly abundant verstraetearchaeotal mcrA sequences were also recovered. In addition, detection of SSU rRNA and mcrA transcripts from one hot spring suggested that predominant Bathyarchaeota were also active, and that methane cycling genes are expressed by the Euryarchaeota, Verstraetearchaeota, and an unknown lineage basal to the Bathyarchaeota. These findings greatly expand the diversity of the key marker gene for anaerobic alkane cycling and outline the need for greater understanding of the functional capacity and phylogenetic affiliation of novel mcrA variants.
Collapse
|