1
|
Nanbo A. Current Insights into the Maturation of Epstein-Barr Virus Particles. Microorganisms 2024; 12:806. [PMID: 38674750 PMCID: PMC11051851 DOI: 10.3390/microorganisms12040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The three subfamilies of herpesviruses (alphaherpesviruses, betaherpesviruses, and gammaherpesviruses) appear to share a unique mechanism for the maturation and egress of virions, mediated by several budding and fusion processes of various organelle membranes during replication, which prevents cellular membrane disruption. Newly synthesized viral DNA is packaged into capsids within the nucleus, which are subsequently released into the cytoplasm via sequential fusion (primary envelopment) and budding through the inner and outer nuclear membranes. Maturation concludes with tegumentation and the secondary envelopment of nucleocapsids, which are mediated by budding into various cell organelles. Intracellular compartments containing mature virions are transported to the plasma membrane via host vesicular trafficking machinery, where they fuse with the plasma membrane to extracellularly release mature virions. The entire process of viral maturation is orchestrated by sequential interactions between viral proteins and intracellular membranes. Compared with other herpesvirus subfamilies, the mechanisms of gammaherpesvirus maturation and egress remain poorly understood. This review summarizes the major findings, including recently updated information of the molecular mechanism underlying the maturation and egress process of the Epstein-Barr virus, a ubiquitous human gammaherpesvirus subfamily member that infects most of the population worldwide and is associated with a number of human malignancies.
Collapse
Affiliation(s)
- Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
2
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
3
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
4
|
Epstein-Barr Virus BBRF2 Is Required for Maximum Infectivity. Microorganisms 2019; 7:microorganisms7120705. [PMID: 31888254 PMCID: PMC6955869 DOI: 10.3390/microorganisms7120705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a member of the gammaherpesvirinae, which causes infectious mononucleosis and several types of cancer. BBRF2 is an uncharacterized gene of EBV and is expressed during the lytic phase. To evaluate its function, BBRF2-knockout EBV was prepared using bacterial artificial chromosome (BAC) technology and the CRISPR/Cas9 system. Although viral gene expression, DNA synthesis, and progeny secretion were not affected, the infectivity of progeny viruses was significantly reduced by the disruption of BBRF2. When expressed alone, BBRF2 protein localized to the nucleus and cytoplasm, while the coexpression of an interacting partner, BSRF1, resulted in its relocalization to the cytoplasm. Interestingly, the coexpression of BBRF2 protected BSRF1 from proteasome/ubiquitin-dependent degradation. Therefore, BBRF2, together with BSRF1, augments viral infectivity.
Collapse
|
5
|
S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. J Virol 2019; 93:JVI.01707-18. [PMID: 30700607 DOI: 10.1128/jvi.01707-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Temporally controlled gene expression is necessary for the propagation of herpesviruses. To achieve this, herpesviruses encode several transcriptional regulators. In Epstein-Barr virus, BcRF1 associates with five viral proteins (BDLF4, BGLF3, BFRF2, BVLF1, and BDLF3.5) to form the viral late (L) gene regulatory complex, which is called the viral preinitiation complex (vPIC), on TATT-containing promoters. However, regulation of the vPIC has been largely unexplored. In this study, we performed two screens using a kinase inhibitor library and identified a series of cyclin-dependent kinase (CDK) inhibitors that downregulated the expression of L genes without any impact on viral DNA replication through destabilization of the BDLF4 protein. Knockdown of CDK2 by short hairpin RNA (shRNA) and proteasome inhibitor treatment showed that phosphorylation of the BDLF4 protein prevented ubiquitin-mediated degradation. Moreover, we demonstrated that cyclin A- and E-associated CDK2 complexes phosphorylated BDLF4 in vitro, and we identified several serine/threonine phosphorylation sites in BDLF4. Phosphoinactive and phosphomimic mutants revealed that phosphorylation at threonine 91 plays a role in stabilizing BDLF4. Therefore, our findings indicate that S-like-phase CDKs mediate the regulation of L gene expression through stabilization of the BDLF4 protein, which makes the temporal L gene expression system more robust.IMPORTANCE Late (L) genes represent more than one-third of the herpesvirus genome, suggesting that many of these genes are indispensable for the life cycle of the virus. With the exception of BCRF1, BDLF2, and BDLF3, Epstein-Barr virus L genes are transcribed by viral regulators, which are known as the viral preinitiation complex (vPIC) and the host RNA polymerase II complex. Because the vPIC is conserved in beta- and gammaherpesviruses, studying the control of viral L gene expression by the vPIC contributes to the development of drugs that specifically inhibit these processes in beta- and gammaherpesvirus infections/diseases. In this study, we demonstrated that CDK inhibitors induced destabilization of the vPIC component BDLF4, leading to a reduction in L gene expression and subsequent progeny production. Our findings suggest that CDK inhibitors may be a therapeutic option against beta- and gammaherpesviruses in combination with existing inhibitors of herpesvirus lytic replication, such as ganciclovir.
Collapse
|
6
|
Nanbo A, Noda T, Ohba Y. Epstein-Barr Virus Acquires Its Final Envelope on Intracellular Compartments With Golgi Markers. Front Microbiol 2018; 9:454. [PMID: 29615992 PMCID: PMC5864893 DOI: 10.3389/fmicb.2018.00454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 01/18/2023] Open
Abstract
Herpesvirus subfamilies typically acquire their final envelope in various cytoplasmic compartments such as the trans-Golgi network (TGN), and endosomes prior to their secretion into the extracellular space. However, the sites for the final envelopment of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, are poorly understood. Here, we characterized the sites for the final envelopment of EBV in Burkitt’s lymphoma cell lines induced into the lytic cycle by crosslinking cell surface IgG. Electron microscopy revealed the various stages of maturation and egress of progeny virions including mature EBV in irregular cytoplasmic vesicles. Immunofluorescence staining showed that gp350/220, the major EBV glycoprotein, and the viral capsid antigen, p18, efficiently colocalized with a cis-Golgi marker, GM130. gp350/220 partly colocalized with the TGN, which was distributed in a fragmented and dispersed pattern in the cells induced into the lytic cycle. In contrast, limited colocalization was observed between gp350/220 and endosomal markers, such as a multi-vesicular bodies marker, CD63, a recycling endosome marker, Rab11, and a regulatory secretion vesicles marker, Rab27a. Finally, we observed that treatment of cells with brefeldin A, an inhibitor of vesicle trafficking between the endoplasmic reticulum and Golgi apparatus, resulted in the perinuclear accumulation of gp350/220 and inhibition of its distribution to the plasma membrane. Brefeldin A also inhibited the release of infectious EBV. Taken together, our findings support a model in which EBV acquires its final envelope in intracellular compartments containing markers of Golgi apparatus, providing new insights into how EBV matures.
Collapse
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Lin J, Wang C, Zhang L, Wang T, Zhang J, Liang W, Li C, Qian G, Ouyang Y, Guo K, Zhang Y. Rab5 Enhances Classical Swine Fever Virus Proliferation and Interacts with Viral NS4B Protein to Facilitate Formation of NS4B Related Complex. Front Microbiol 2017; 8:1468. [PMID: 28848503 PMCID: PMC5550665 DOI: 10.3389/fmicb.2017.01468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever virus (CSFV) is a fatal pig pestivirus and causes serious financial losses to the pig industry. CSFV NS4B protein is one of the most important viral replicase proteins. Rab5, a member of the small Rab GTPase family, is involved in infection and replication of numerous viruses including hepatitis C virus and dengue virus. Until now, the effects of Rab5 on the proliferation of CSFV are poorly defined. In the present study, we showed that Rab5 could enhance CSFV proliferation by utilizing lentivirus-mediated constitutive overexpression and eukaryotic plasmid transient overexpression approaches. On the other hand, lentivirus-mediated short hairpin RNA knockdown of Rab5 dramatically inhibited virus production. Co-immunoprecipitation, glutathione S-transferase pulldown and laser confocal microscopy assays further confirmed the interaction between Rab5 and CSFV NS4B protein. In addition, intracellular distribution of NS4B-Red presented many granular fluorescent signals (GFS) in CSFV infected PK-15 cells. Inhibition of basal Rab5 function with Rab5 dominant negative mutant Rab5S34N resulted in disruption of the GFS. These results indicate that Rab5 plays a critical role in facilitating the formation of the NS4B related complexes. Furthermore, it was observed that NS4B co-localized with viral NS3 and NS5A proteins in the cytoplasm, suggesting that NS3 and NS5A might be components of the NS4B related complex. Taken together, these results demonstrate that Rab5 positively modulates CSFV propagation and interacts with NS4B protein to facilitate the NS4B related complexes formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|